Affinity Tags for Protein Purification

2020 ◽  
Vol 21 (8) ◽  
pp. 821-830
Author(s):  
Vibhor Mishra

The affinity tags are unique proteins/peptides that are attached at the N- or C-terminus of the recombinant proteins. These tags help in protein purification. Additionally, some affinity tags also serve a dual purpose as solubility enhancers for challenging protein targets. By applying a combinatorial approach, carefully chosen affinity tags designed in tandem have proven to be very successful in the purification of single proteins or multi-protein complexes. In this mini-review, the key features of the most commonly used affinity tags are discussed. The affinity tags have been classified into two significant categories, epitope tags, and protein/domain tags. The epitope tags are generally small peptides with high affinity towards a chromatography resin. The protein/domain tags often perform double duty as solubility enhancers as well as aid in affinity purification. Finally, protease-based affinity tag removal strategies after purification are discussed.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xinyu Zhao ◽  
Guoshun Li ◽  
Shufang Liang

Affinity tags have become powerful tools from basic biological research to structural and functional proteomics. They were widely used to facilitate the purification and detection of proteins of interest, as well as the separation of protein complexes. Here, we mainly discuss the benefits and drawbacks of several affinity or epitope tags frequently used, including hexahistidine tag, FLAG tag, Strep II tag, streptavidin-binding peptide (SBP) tag, calmodulin-binding peptide (CBP), glutathione S-transferase (GST), maltose-binding protein (MBP), S-tag, HA tag, and c-Myc tag. In some cases, a large-size affinity tag, such as GST or MBP, can significantly impact on the structure and biological activity of the fusion partner protein. So it is usually necessary to excise the tag by protease. The most commonly used endopeptidases are enterokinase, factor Xa, thrombin, tobacco etch virus, and human rhinovirus 3C protease. The proteolysis features of these proteases are described in order to provide a general guidance on the proteolytic removal of the affinity tags.


2013 ◽  
Vol 449 (3) ◽  
pp. 649-659 ◽  
Author(s):  
Tamara D. Skene-Arnold ◽  
Hue Anh Luu ◽  
R. Glen Uhrig ◽  
Veerle De Wever ◽  
Mhairi Nimick ◽  
...  

The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c–ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, β and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309–314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.


2021 ◽  
Author(s):  
Lazar Gardijan ◽  
Marija Miljkovic ◽  
Mina Obradovic ◽  
Branka Borovic ◽  
Goran Vukotic ◽  
...  

Many protein expression and purification systems are commercially available to provide a sufficient amount of pure, soluble and active native protein, such as the pMAL system based on E. coli maltose binding protein tag (MBP). Adding specific amino acid tags to the N- or C-terminus of the protein increases solubility and facilitates affinity purification of proteins. However, many of expressed tagged proteins consequently lose functionality, particularly small peptides such as antimicrobial peptides (AMPs). Objective of this study was to redesign the pMAL expression vector in order to increase the efficacy of MBP tag separation from native peptides. Redesign of the pMAL expression vector included introduction of the His 6 tag and the enterokinase cleavage site downstream from the original MBP tag and Xa cleavage site enabling purification of native and active peptide (P) following two-step affinity chromatography. In the first step the entire MBP-His 6 -P fusion protein is purified through binding to Ni-NTA agarose. In the second step, the purification was performed by adding mixture of amylose and Ni-NTA agarose resins following cleavage of the fusion protein with active His 6 tagged enterokinase. This removes MBP-His 6 and His 6 -enterokinase leaving pure native protein in solution. The redesigned pMAL vectors were optimized for cytoplasmic (pMALc5HisEk) and periplasmic (pMALp5HisEk) peptides expression. Two-step purification protocol was successfully applied in purification of active native AMPs, lactococcin A and human b-defensin. Taken together, we established the optimal conditions and pipeline for overexpression and purification of large amount of native peptides, that can be implemented in any laboratory.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2015 ◽  
Vol 118 ◽  
pp. 81-94 ◽  
Author(s):  
Jean-Philippe Lambert ◽  
Monika Tucholska ◽  
Christopher Go ◽  
James D.R. Knight ◽  
Anne-Claude Gingras

2010 ◽  
Vol 9 (5) ◽  
pp. 795-805 ◽  
Author(s):  
Nadine Zekert ◽  
Daniel Veith ◽  
Reinhard Fischer

ABSTRACT Peroxisomes are a diverse class of organelles involved in different physiological processes in eukaryotic cells. Although proteins imported into peroxisomes carry a peroxisomal targeting sequence at the C terminus (PTS1) or an alternative one close to the N terminus (PTS2), the protein content of peroxisomes varies drastically. Here we suggest a new class of peroxisomes involved in microtubule (MT) formation. Eukaryotic cells assemble MTs from distinct points in the cell. In the fungus Aspergillus nidulans, septum-associated microtubule-organizing centers (sMTOCs) are very active in addition to the spindle pole bodies (SPBs). Previously, we identified a novel MTOC-associated protein, ApsB (Schizosaccharomyces pombe mto1), whose absence affected MT formation from sMTOCs more than from SPBs, suggesting that the two protein complexes are organized differently. We show here that sMTOCs share at least two further components, gamma-tubulin and GcpC (S. pombe Alp6) with SPBs and found that ApsB interacts with gamma-tubulin. In addition, we discovered that ApsB interacts with the Woronin body protein HexA and is targeted to a subclass of peroxisomes via a PTS2 peroxisomal targeting sequence. The PTS2 motif was necessary for function but could be replaced with a PTS1 motif at the C terminus of ApsB. These results suggest a novel function for a subclass of peroxisomes in cytoskeletal organization.


1991 ◽  
Vol 278 (3) ◽  
pp. 749-757 ◽  
Author(s):  
R J Edwards ◽  
A M Singleton ◽  
B P Murray ◽  
S Murray ◽  
A R Boobis ◽  
...  

A region of rat cytochrome P450IA1 at residues 294-301 (Gln-Asp-Arg-Arg-Leu-Asp-Glu-Asn), equivalent to a proinhibitory region of cytochrome P450IA2, was identified by sequence alignment. Anti-peptide antibodies were successfully raised when the peptide was coupled through either its N- or its C-terminus to carrier protein, but no antibodies were produced against the so-called multiple peptide antigen, which consisted of eight copies of the peptide attached through its C-terminus to a synthetic base. Both of the anti-peptide antibodies bound specifically to cytochrome P450IA1 in the rat, as shown by e.l.i.s.a. and immunoblotting. They inhibited microsomal aryl hydrocarbon hydroxylase activity and the mutagenic activation of 2-acetylaminofluorene (these reactions are catalysed by cytochrome P450IA1), but not high-affinity phenacetin O-de-ethylation activity, which is catalysed by cytochrome P450IA2. However, there was differences in the properties of the two antisera in their binding to cytochromes P450IA1 in species other than the rat, their relative binding to the multiple peptide antigen, the yield of antibody following affinity purification using peptide coupled through its N-terminus to CNBr-activated Sepharose, and the binding of the purified preparations to N- and C-terminal-coupled peptide conjugates. These observations indicated that the antibodies were directed to the region of the peptide opposite to the end which was coupled to the carrier protein. Nevertheless, both of the antibody preparations bound equally well to the target cytochrome P450, thus indicating that, in the native protein, the whole of the peptide region is exposed on the surface of cytochrome P450IA1 and is available for binding by the antibodies. The role of this region appears to be the same in both cytochromes P450IA1 and P450IA2, despite the difference in its primary structure in the two cytochromes P450.


2010 ◽  
Vol 84 (18) ◽  
pp. 9019-9026 ◽  
Author(s):  
Andrea Schuessler ◽  
Kerstin Laib Sampaio ◽  
Laura Scrivano ◽  
Christian Sinzger

ABSTRACT The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.


2021 ◽  
Vol 118 (39) ◽  
pp. e2109063118
Author(s):  
Yang Li ◽  
Cheng Kai Lu ◽  
Chen Yang Li ◽  
Ri Hua Lei ◽  
Meng Na Pu ◽  
...  

IRON MAN (IMA) peptides, a family of small peptides, control iron (Fe) transport in plants, but their roles in Fe signaling remain unclear. BRUTUS (BTS) is a potential Fe sensor that negatively regulates Fe homeostasis by promoting the ubiquitin-mediated degradation of bHLH105 and bHLH115, two positive regulators of the Fe deficiency response. Here, we show that IMA peptides interact with BTS. The C-terminal parts of IMA peptides contain a conserved BTS interaction domain (BID) that is responsible for their interaction with the C terminus of BTS. Arabidopsis thaliana plants constitutively expressing IMA genes phenocopy the bts-2 mutant. Moreover, IMA peptides are ubiquitinated and degraded by BTS. bHLH105 and bHLH115 also share a BID, which accounts for their interaction with BTS. IMA peptides compete with bHLH105/bHLH115 for interaction with BTS, thereby inhibiting the degradation of these transcription factors by BTS. Genetic analyses suggest that bHLH105/bHLH115 and IMA3 have additive roles and function downstream of BTS. Moreover, the transcription of both BTS and IMA3 is activated directly by bHLH105 and bHLH115 under Fe-deficient conditions. Our findings provide a conceptual framework for understanding the regulation of Fe homeostasis: IMA peptides protect bHLH105/bHLH115 from degradation by sequestering BTS, thereby activating the Fe deficiency response.


Author(s):  
Venkatasalam Shanmugabalaji ◽  
Véronique Douet ◽  
Birgit Agne ◽  
Felix Kessler

Sign in / Sign up

Export Citation Format

Share Document