scholarly journals Mutational Mapping of UL130 of Human Cytomegalovirus Defines Peptide Motifs within the C-Terminal Third as Essential for Endothelial Cell Infection

2010 ◽  
Vol 84 (18) ◽  
pp. 9019-9026 ◽  
Author(s):  
Andrea Schuessler ◽  
Kerstin Laib Sampaio ◽  
Laura Scrivano ◽  
Christian Sinzger

ABSTRACT The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.

2008 ◽  
Vol 89 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Christian Sinzger ◽  
Gabriele Hahn ◽  
Margarete Digel ◽  
Ruth Katona ◽  
Kerstin Laib Sampaio ◽  
...  

Human cytomegalovirus (HCMV) strain TB40/E, replicates efficiently, exhibits a broad cell tropism and is widely used for infection of endothelial cells and monocyte-derived cells yet has not been available in a phenotypically homogeneous form compatible with genetic analysis. To overcome this problem, we cloned the TB40/E strain into a bacterial artificial chromosome (BAC) vector. Both highly endotheliotropic and poorly endotheliotropic virus clones, representing three distinct restriction fragment patterns, were reconstituted after transfection of BAC clones derived from previously plaque-purified strain TB40/E. For one of the highly endotheliotropic clones, TB40-BAC4, we provide the genome sequence. Two BACs with identical restriction fragment patterns but different cell tropism were further analysed in the UL128-UL131A gene region. Sequence analysis revealed one coding-relevant adenine insertion at position 332 of UL128 in the BAC of the poorly endotheliotropic virus, which caused a frameshift in the C-terminal part of the coding sequence. Removal of this insertion by markerless mutagenesis restored the highly endotheliotropic phenotype, indicating that the loss of endothelial cell tropism was caused by this insertion. In conclusion, HCMV strain TB40/E, which combines the high endothelial cell tropism of a clinical isolate with the high titre growth of a cell culture adapted strain, is now available as a BAC clone suitable for genetic engineering. The results also suggest BAC cloning as a suitable method for selection of genetically defined virus clones.


2008 ◽  
Vol 82 (22) ◽  
pp. 11239-11246 ◽  
Author(s):  
Andrea Schuessler ◽  
Kerstin Laib Sampaio ◽  
Christian Sinzger

ABSTRACT The viral genes UL128, UL130, and UL131A have been identified as major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV), with deletion of either gene causing a null phenotype. We hypothesized that a functional scanning of these genes by minor genetic modifications would allow for the generation of mutants with an intermediate phenotype. By combining charge cluster-to-alanine (CCTA) mutagenesis with markerless mutagenesis of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain, we analyzed UL128 in order to identify functional sites and hence enable targeted modulation of the EC tropism of HCMV. A total of nine mutations in eight charge clusters were tested. Three of the CCTA mutations severely reduced EC tropism, three were irrelevant, two had a weak effect on cell tropism, and one mutation in the most C-terminal cluster caused an intermediate phenotype. All of the highly effective mutations were located in a core region (amino acids 72 to 106) which appears to be particularly crucial for EC tropism. The intermediate effect of mutations in the C-terminal cluster could be modulated by varying the number of amino acids replaced with alanine. This study provides a rational approach for targeted modulation of HCMV cell tropism, which may aid in the development of HCMV strains with a desired degree of attenuation.


2010 ◽  
Vol 17 (4) ◽  
pp. 274-287 ◽  
Author(s):  
Anne-Laure Millard ◽  
Lea Häberli ◽  
Christian Sinzger ◽  
Maddalena Ghielmetti ◽  
Mårten K. J. Schneider ◽  
...  

2005 ◽  
Vol 86 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Detlef Michel ◽  
Irena Milotić ◽  
Markus Wagner ◽  
Bianca Vaida ◽  
Jens Holl ◽  
...  

The human cytomegalovirus (HCMV) UL78 ORF is considered to encode a seven-transmembrane receptor. However, neither the gene nor the UL78 protein has been characterized so far. The objective of this study was to investigate the UL78 gene and to clarify whether it is essential for replication. UL78 transcription was activated early after infection, was inhibited by cycloheximide but not by phosphonoacetic acid, and resulted in a 1·7 kb mRNA. Later in the replication cycle, a second mRNA of 4 kb evolved, comprising the UL77 and UL78 ORFs. The 5′ end of the UL78 mRNA initiated 48 bp upstream of the translation start and the polyadenylated tail started 268 bp downstream of the UL78 translation stop codon within the UL79 ORF. By using bacterial artificial chromosome technology, a recombinant HCMV lacking most of the UL78 coding region was constructed. Successful reconstitution of the UL78-deficient virus proved that the gene was not essential for virus replication in fibroblasts. The deletion also did not reduce virus replication in ex vivo-cultured sections of human renal arteries. Analysis of viral proteins at different stages of the replication cycle confirmed these results. Among clinical HCMV isolates, the predicted UL78 protein was highly conserved. However, an accumulation of different single mutations could be found in the N-terminal region and at the very end of the C terminus. Due to the absence of an in vivo HCMV model, the role of UL78 in the pathogenesis of HCMV infection in humans remains unclear.


2006 ◽  
Vol 87 (9) ◽  
pp. 2451-2460 ◽  
Author(s):  
Barbara Adler ◽  
Laura Scrivano ◽  
Zsolt Ruzcics ◽  
Brigitte Rupp ◽  
Christian Sinzger ◽  
...  

The human cytomegalovirus (HCMV) genes UL128, UL130 and UL131A are essential for endothelial cell infection. Complementation of the defective UL131A gene of the non-endotheliotropic HCMV strain AD169 with wild-type UL131A in cis in an ectopic position restored endothelial cell tropism. The UL131A protein was found in virions in a complex with gH. Coinfection of fibroblasts with UL131A-negative and -positive viruses restored the endothelial cell tropism of UL131A-negative virions by complementing the virions with UL131A protein. Virus entry into endothelial cells, but not into fibroblasts, was blocked by an antipeptide antiserum to pUL131A. AD169, cis-complemented with wild-type UL131A, showed an impaired release of infectious particles from fibroblasts. A comparable defect in virus release was observed when UL131A was expressed ectopically in a virus background already expressing an intact copy of UL131A. In contrast, virus release from infected endothelial cells was not affected by UL131A. These data suggest a dual role for pUL131A in virus entry and virus exit from infected cells.


2005 ◽  
Vol 79 (13) ◽  
pp. 8361-8373 ◽  
Author(s):  
Marco Patrone ◽  
Massimiliano Secchi ◽  
Loretta Fiorina ◽  
Mariagrazia Ierardi ◽  
Gabriele Milanesi ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) growth in endothelial cells (EC) requires the expression of the UL131A-128 locus proteins. In this study, the UL130 protein (pUL130), the product of the largest gene of the locus, is shown to be a luminal glycoprotein that is inefficiently secreted from infected cells but is incorporated into the virion envelope as a Golgi-matured form. To investigate the mechanism of the UL130-mediated promotion of viral growth in EC, we performed a complementation analysis of a UL130 mutant strain. To provide UL130 in trans to viral infections, we constructed human embryonic lung fibroblast (HELF) and human umbilical vein endothelial cell (HUVEC) derivative cell lines that express UL130 via a retroviral vector. When the UL130-negative virus was grown in UL130-complementing HELF, the infectivity of progeny virions for HUVEC was restored to the wild-type level. In contrast, the infectivity of the UL130-negative virus for UL130-complementing HUVEC was low and similar to that of the same virus infecting control noncomplementing HUVEC. The UL130-negative virus, regardless of whether or not it had been complemented in the prior cycle, could form plaques only on UL130-complementing HUVEC, not control HUVEC. Because (i) both wild-type and UL130-transcomplemented virions maintained their infectivity for HUVEC after purification, (ii) UL130 failed to complement in trans the UL130-negative virus when it was synthesized in a cell separate from the one that produced the virions, and (iii) pUL130 is a virion protein, models are favored in which pUL130 acquisition in the producer cell renders HCMV virions competent for a subsequent infection of EC.


2020 ◽  
Vol 21 (8) ◽  
pp. 821-830
Author(s):  
Vibhor Mishra

The affinity tags are unique proteins/peptides that are attached at the N- or C-terminus of the recombinant proteins. These tags help in protein purification. Additionally, some affinity tags also serve a dual purpose as solubility enhancers for challenging protein targets. By applying a combinatorial approach, carefully chosen affinity tags designed in tandem have proven to be very successful in the purification of single proteins or multi-protein complexes. In this mini-review, the key features of the most commonly used affinity tags are discussed. The affinity tags have been classified into two significant categories, epitope tags, and protein/domain tags. The epitope tags are generally small peptides with high affinity towards a chromatography resin. The protein/domain tags often perform double duty as solubility enhancers as well as aid in affinity purification. Finally, protease-based affinity tag removal strategies after purification are discussed.


2008 ◽  
Vol 82 (21) ◽  
pp. 10803-10810 ◽  
Author(s):  
Eun-Gyung Lee ◽  
Maxine L. Linial

ABSTRACT Foamy viruses (FV) differ from orthoretroviruses in many aspects of their replication cycle. A major difference is in the mode of Pol expression, regulation, and encapsidation into virions. Orthoretroviruses synthesize Pol as a Gag-Pol fusion protein so that Pol is encapsidated into virus particles through Gag assembly domains. However, as FV express Pol independently of Gag from a spliced mRNA, packaging occurs through a distinct mechanism. FV genomic RNA contains cis-acting sequences that are required for Pol packaging, suggesting that Pol binds to RNA for its encapsidation. However, it is not known whether Gag is directly involved in Pol packaging. Previously our laboratory showed that sequences flanking the three glycine-arginine-rich (GR) boxes at the C terminus of FV Gag contain domains important for RNA packaging and Pol expression, cleavage, and packaging. We have now shown that both deletion and substitution mutations in the first GR box (GR1) prevented neither the assembly of particles with wild-type density nor packaging of RNA genomes but led to a defect in Pol packaging. Site-directed mutagenesis of GR1 indicated that the clustered positively charged amino acids in GR1 play important roles in Pol packaging. Our results suggest that GR1 contains a Pol interaction domain and that a Gag-Pol complex is formed and binds to RNA for incorporation into virions.


2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Kui Yang ◽  
Xiaoqun Dang ◽  
Joel D. Baines

ABSTRACT Monomeric herpesvirus DNA is cleaved from concatemers and inserted into preformed capsids through the actions of the viral terminase. The terminase of herpes simplex virus (HSV) is composed of three subunits encoded by UL15, UL28, and UL33. The UL33-encoded protein (pUL33) interacts with pUL28, but its precise role in the DNA cleavage and packaging reaction is unclear. To investigate the function of pUL33, we generated a panel of recombinant viruses with either deletions or substitutions in the most conserved regions of UL33 using a bacterial artificial chromosome system. Deletion of 11 amino acids (residues 50 to 60 or residues 110 to 120) precluded viral replication, whereas the truncation of the last 10 amino acids from the pUL33 C terminus did not affect viral replication or the interaction of pUL33 with pUL28. Mutations that replaced the lysine at codon 110 and the arginine at codon 111 with alanine codons failed to replicate, and the pUL33 mutant interacted with pUL28 less efficiently. Interestingly, genomic termini of the large (L) and small (S) components were detected readily in cells infected with these mutants, indicating that concatemeric DNA was cleaved efficiently. However, the release of monomeric genomes as assessed by pulsed-field gel electrophoresis was greatly diminished, and DNA-containing capsids were not observed. These results suggest that pUL33 is necessary for one of the two viral DNA cleavage events required to release individual genomes from concatemeric viral DNA. IMPORTANCE This paper shows a role for pUL33 in one of the two DNA cleavage events required to release monomeric genomes from concatemeric viral DNA. This is the first time that such a phenotype has been observed and is the first identification of a function of this protein relevant to DNA packaging other than its interaction with other terminase components.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiuqi Chen ◽  
Nandakumar Rajasekaran ◽  
Kaixian Liu ◽  
Christian M. Kaiser

Abstract Folding of individual domains in large proteins during translation helps to avoid otherwise prevalent inter-domain misfolding. How folding intermediates observed in vitro for the majority of proteins relate to co-translational folding remains unclear. Combining in vivo and single-molecule experiments, we followed the co-translational folding of the G-domain, encompassing the first 293 amino acids of elongation factor G. Surprisingly, the domain remains unfolded until it is fully synthesized, without collapsing into molten globule-like states or forming stable intermediates. Upon fully emerging from the ribosome, the G-domain transitions to its stable native structure via folding intermediates. Our results suggest a strictly sequential folding pathway initiating from the C-terminus. Folding and synthesis thus proceed in opposite directions. The folding mechanism is likely imposed by the final structure and might have evolved to ensure efficient, timely folding of a highly abundant and essential protein.


Sign in / Sign up

Export Citation Format

Share Document