Aspartic Protease Inhibitors: Effective Drugs against the Human Fungal Pathogen Candida albicans

2013 ◽  
Vol 13 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Andre L.S. Santos ◽  
Lys A. Braga-Silva
2017 ◽  
Vol 8 ◽  
Author(s):  
Julien Chaillot ◽  
Faiza Tebbji ◽  
Carlos García ◽  
Hugo Wurtele ◽  
René Pelletier ◽  
...  

2004 ◽  
Vol 3 (5) ◽  
pp. 1164-1168 ◽  
Author(s):  
Yvonne Weber ◽  
Stephan K.-H. Prill ◽  
Joachim F. Ernst

ABSTRACT Sec20p is an essential endoplasmic reticulum (ER) membrane protein in yeasts, functioning as a tSNARE component in retrograde vesicle traffic. We show that Sec20p in the human fungal pathogen Candida albicans is extensively O mannosylated by protein mannosyltransferases (Pmt proteins). Surprisingly, Sec20p occurs at wild-type levels in a pmt6 mutant but at very low levels in pmt1 and pmt4 mutants and also after replacement of specific Ser/Thr residues in the lumenal domain of Sec20p. Pulse-chase experiments revealed rapid degradation of unmodified Sec20p (38.6 kDa) following its biosynthesis, while the stable O-glycosylated form (50 kDa) was not formed in a pmt1 mutant. These results suggest a novel function of O mannosylation in eukaryotes, in that modification by specific Pmt proteins will prevent degradation of ER-resident membrane proteins via ER-associated degradation or a proteasome-independent pathway.


2018 ◽  
Author(s):  
Prashant R. Desai ◽  
Klaus Lengeler ◽  
Mario Kapitan ◽  
Silas Matthias Janßen ◽  
Paula Alepuz ◽  
...  

ABSTRACTExtensive 5’ untranslated regions (UTR) are a hallmark of transcripts determining hyphal morphogenesis inCandida albicans.The major transcripts of theEFG1gene, which are responsible for cellular morphogenesis and metabolism, contain a 5’ UTR of up to 1170 nt. Deletion analyses of the 5’ UTR revealed a 218 nt sequence that is required for production of the Efg1 protein and its functions in filamentation, without lowering the level and integrity of theEFG1transcript. Polysomal analyses revealed that the 218 nt 5’ UTR sequence is required for efficient translation of the Efg1 protein. Replacement of theEFG1ORF by the heterologous reporter geneCaCBGlucconfirmed the positive regulatory importance of the identified 5’ UTR sequence. In contrast to other reported transcripts containing extensive 5’ UTR sequences, these results indicate the positive translational function of the 5’ UTR sequence in theEFG1transcript, which is observed in context of the nativeEFG1promoter. The results suggest that the 5’ UTR recruits regulatory factors, possibly during emergence of the native transcript, which aid in translation of theEFG1transcript.IMPORTANCEMany of the virulence traits that makeCandida albicansan important human fungal pathogen are regulated on a transcriptional level. Here we report an important regulatory contribution of translation, which is exerted by the extensive 5’ untranslated regulatory sequence (5’ UTR) of the transcript for the protein Efg1, which determines growth, metabolism and filamentation in the fungus. Presence of the 5’ UTR is required for efficient translation of Efg1, to promote filamentation. Because transcripts for many relevant regulators contain extensive 5’ UTR sequences, it appears that virulence ofC. albicansdepends on the combination of transcriptional and translation regulatory mechanisms.


2014 ◽  
Vol 67 (4) ◽  
pp. 349-350 ◽  
Author(s):  
Paul Wai-Kei Tsang ◽  
Alan Pak-Kin Wong ◽  
Han-Sung Jung ◽  
Wing-Ping Fong

Yeast ◽  
2020 ◽  
Author(s):  
Praveen Kumar Reddy ◽  
Dileep Pullepu ◽  
Darshan Dhabalia ◽  
Sagunthala Murugesan Udaya Prakash ◽  
Mohammad Anaul Kabir

Antibiotics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Olena P. Ishchuk ◽  
Olov Sterner ◽  
Ulf Ellervik ◽  
Sophie Manner

The opportunistic human fungal pathogen Candida albicans relies on cell morphological transitions to develop biofilm and invade the host. In the current study, we developed new regulatory molecules, which inhibit the morphological transition of C. albicans from yeast-form cells to cells forming hyphae. These compounds, benzyl α-l-fucopyranoside and benzyl β-d-xylopyranoside, inhibit the hyphae formation and adhesion of C. albicans to a polystyrene surface, resulting in a reduced biofilm formation. The addition of cAMP to cells treated with α-l-fucopyranoside restored the yeast-hyphae switch and the biofilm level to that of the untreated control. In the β-d-xylopyranoside treated cells, the biofilm level was only partially restored by the addition of cAMP, and these cells remained mainly as yeast-form cells.


2020 ◽  
Vol 1 ◽  
Author(s):  
Lourimar Viana Nascimento Franco de Sousa ◽  
Carlos Davi de Oliveira Maia ◽  
Isadora Sousa Carvalho ◽  
Juliano Meireles Prata ◽  
Larissa Carla Rodrigues Arcanjo ◽  
...  

AbstractDenture-related stomatitis caused by Candida spp. affects elderly individuals using partial/total prosthesis, provoking several discomforts including burning sensation and altered taste. Herein, we have studied 52 denture-wearing individuals (>60 years-old), attended at the dentistry clinic of UNIVALE, aiming to isolate Candida spp. directly from the stomatitis lesions and to evaluate their potential to produce virulence attributes. A low prevalence of denture-related stomatitis was reported in these patients (4/52; 7.7%). Candida albicans was isolated in the 4 selected patients, with the ability to form biofilm over a polystyrene surface and to produce aspartic protease, esterase and hemolysin. However, neither phospholipase nor caseinase activities were detected. Planktonic-growing yeasts were susceptible to amphotericin B and caspofungin, while the susceptibility to azoles (fluconazol, itraconazole and voriconazole) varied depending on either the isolate or antifungal. Relevantly, biofilm-forming C. albicans cells exhibited resistance to all studied antifungals. So, new effective drugs against resistant C. albicans isolates causing denture-related stomatitis are urgently required.


Sign in / Sign up

Export Citation Format

Share Document