Synthesis, Characterization, and Atenolol Delivery Application of Functionalized Mesoporous Hydroxyapatite Nanoparticles Prepared by Microwave-Assisted Co-precipitation Method

2016 ◽  
Vol 13 (7) ◽  
pp. 1123-1129 ◽  
Author(s):  
Sobhan Mortazavi-Derazkola ◽  
Mohammad Reza Naimi-Jamal ◽  
Seyedeh Masoumeh Ghoreishi
2018 ◽  
Vol 33 (4) ◽  
pp. 501-513 ◽  
Author(s):  
Hossein Semyari ◽  
Majid Salehi ◽  
Ferial Taleghani ◽  
Arian Ehterami ◽  
Farshid Bastami ◽  
...  

In this study, hydroxyapatite nanoparticles containing 10% doxycycline, a structural isomer of tetracycline, was prepared by the co-precipitation method. It was added to collagen solution for the preparation of the scaffold with freeze-casting method in order to develop a composite scaffold with both antibacterial and osteoinductive properties for repairing bone defects. The scaffolds were evaluated regarding their morphology, porosity, degradation and cellular response. The scaffolds for further investigation were added in a rat calvaria defect model. The study showed that after eight weeks, the bone formation was relatively higher in the collagen/nano-hydroxyapatite/doxycycline group with completely filled defect when compared with other groups. Histopathological evaluation showed that the defect in the collagen/nano-hydroxyapatite/doxycycline group was fully replaced by the new bone and connective tissue. Our results provide evidence supporting the possible applicability of doxycycline-containing scaffolds for successful bone regeneration.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 874
Author(s):  
Haifeng Wang ◽  
Jianwei Lu ◽  
Ruoxuan Wang ◽  
Yungu Dong ◽  
Linfeng Ding

The synthesis process has a significant influence on the properties of Ca1-xTiO3:Eu3+x phosphors; thus, an optimized process will lead to a better performance of the Ca1-xTiO3:Eu3+x phosphors. In this work, the feasibility of synthesizing the Ca1-xTiO3:Eu3+x phosphor with a good luminescent performance by combining the chemical co-precipitation method and microwave-assisted sintering was studied. The precursor of Ca1-xTiO3:Eu3+x phosphors were prepared by the chemical co-precipitation method. To find an optimized process, we applied both of the traditional (furnace) sintering and the microwave-assisted sintering to synthesize the Ca1-xTiO3:Eu3+x phosphors. We found out that a sintering power of 528 W for 50 min (temperature around 950 °C) by a microwave oven resulted in similar emission intensity results compared to traditional furnace sintering at 900 °C for 2.5 h. The synthesized Ca1-xTiO3:Eu3+x phosphors has an emission peak at 617 nm (5D0→7F2), which corresponds to the red light band. This new synthesized method is an energy efficient, time saving, and environmentally friendly means for the preparation of Ca1-xTiO3:Eu3+x red phosphor with good luminescent performance.


2011 ◽  
Vol 335-336 ◽  
pp. 960-963
Author(s):  
Jian Bo Qu ◽  
Guang Lun Jing ◽  
Hai Long Xu ◽  
Xiao Xiao Zhang

A facile chemical approach of preparing magnetic Fe3O4nanoparticles with controlled sizes was developed by microwave-assisted co-precipitation method. By changing the synthetic conditions, particle diameter can be tuned from 9.6 to 19 nm. The results indicate that the hydrothermal temperature (HT) and consequent aging time play important roles in controlling of the particle size and crystallization.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550078 ◽  
Author(s):  
Wei-Li Dong ◽  
Xi-Yan Zhang ◽  
Hui Shi ◽  
Xiao-Yun Mi ◽  
Neng-Li Wang ◽  
...  

Nanosized green phosphor LaPO 4: Ce 3+, Tb 3+ has been synthesized by microwave-assisted co-precipitation method. The morphology, crystal structure and photoluminescence properties have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The lanthanum phosphate phosphors with monoclinic crystal structure and fine crystallinity and dispersibility were synthesized at 900°C for 1 h and the particle size of the phosphors is ∼ 100 nm. The strongest photoluminescence emission peak is located at 543 nm due to the (5D4→7F5) transition of Tb 3+ ion. The experimental results indicate that nanosized green phosphor 40% Ce 3+ and 20% Tb 3+ doped LaPO 4 synthesized by microwave-assisted co-precipitation method is a beneficial phosphor for high resolution display devices.


Herein, versatile, and reproducible method to prepare binary metal oxides via microwave assisted synthesis. Catalysts are substances that basically speeds up chemical reactions. Ideally, bonds are formed between the catalysts and the reactants. Also, catalysts permits formation of products from the reactants. These formed products, splits off the catalyst without affecting or changing it. Catalytic kinetics studies the correlate chemical reaction rate with some properties of reactants and/or products for instance; temperature, concentration and pressure. The aim of the project is to prepare pure and bi-metal iron based catalyst by co-precipitation method and to characterize the prepared sample using X-ray diffraction .Metal oxides nanoparticles is a field of interest in catalysis, such that these oxides are used to oxidize carbon monoxide. The samples were prepared through co-precipitation method in laboratory scale. The metals used was copper, iron and cobalt. After preparing pure sample of each metal a mix of two metals were introduced in different ratios. The samples were characterized via X-ray diffraction (XRD) and then the results were compared to exist data introduced from others research, the prepared samples XRD was having a great matching with the data retrieved from internet and we found that the metal could exist in two form of oxides and even could exist as pure metal. Each peak in the XRD figure could indicate one or more phase of the metal.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


Sign in / Sign up

Export Citation Format

Share Document