scholarly journals Improved In vivo Effect of Chrysin as an Absorption Enhancer Via the Preparation of Ternary Solid Dispersion with Brij®L4 and Aminoclay

2018 ◽  
Vol 16 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Sang Hoon Lee ◽  
Yeo-song Lee ◽  
Jae Geun Song ◽  
Hyo-Kyung Han

Background: Chrysin is a strong inhibitor of breast cancer resistance protein (BCRP) but it is practically insoluble in water. Effective solubilization of chrysin is critical for its pharmaceutical application as an absorption enhancer via inhibition of BCRP-mediated drug efflux. Objective: This study aimed to develop an effective oral formulation of chrysin to improve its in vivo effect as an absorption enhancer. Method: Solid dispersions (SDs) of chrysin were prepared with hydrophilic carriers having surface acting properties and a pH modulator. In vitro and in vivo characterizations were performed to select the optimal SDs of chrysin. Results: SDs with Brij&®L4 and aminoclay was most effective in increasing the solubility of chrysin by 13-53 fold at varying drug-carrier ratios. Furthermore, SDs significantly improved the dissolution rate and extent of drug release. SDs (chrysin: Brij&®L4: aminoclay=1:3:5) achieved approximately 60% and 83% drug release within 1 h and 8 h, respectively, in aqueous medium, while the dissolution of the untreated chrysin was less than 13%. XRD patterns indicated the amorphous state of chrysin in SDs. The SD formulation was effective in improving the bioavailability of topotecan, a BCRP substrate in rats. Following oral administration of topotecan with the SDs of chrysin, the Cmax and AUC of topotecan was enhanced by approximately 2.6- and 2-fold, respectively, while the untreated chrysin had no effect. Conclusion: The SD formulation of chrysin with Brij&®L4 and aminoclay appeared to be promising in improving the dissolution of chrysin and enhancing its in vivo effect as an absorption enhancer.

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Huiling Lv ◽  
Chao Wu ◽  
Xuan Liu ◽  
Andi Bai ◽  
Yue Cao ◽  
...  

In this study, we prepared PTX-loaded mesoporous hollow SnO2 nanofibers conjugated with folic acid (SFNFP) for liver cancer therapy. According to SEM and TEM characterization, SFNF showed a mesoporous hollow structure. The average outer diameter was 200 nm, and the wall thickness was 50 nm. The DSC and XRD study showed that PTX in the channels of nanofibers was present in an amorphous state. The in vitro release experiments demonstrated that SFNF could efficiently improve the dissolution rate of PTX. Both in vitro cell experiments and in vivo antitumor experiments showed that SFNFP could efficiently inhibit the growth of liver cancer cells. Therefore, SFNF is a promising targeting antitumor drug delivery carrier.


2019 ◽  
Vol 9 (2) ◽  
pp. 231-240
Author(s):  
Khosro Adibkia ◽  
Solmaz Ghajar ◽  
Karim Osouli-Bostanabad ◽  
Niloufar Balaei ◽  
Shahram Emami ◽  
...  

Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


2010 ◽  
Vol 60 (3) ◽  
pp. 255-266 ◽  
Author(s):  
Santanu Chakraborty ◽  
Madhusmruti Khandai ◽  
Anuradha Sharma ◽  
Nazia Khanam ◽  
Ch. Patra ◽  
...  

Preparation,in vitroandin vivoevaluation of algino-pectinate bioadhesive microspheres: An investigation of the effects of polymers using multiple comparison analysisIonotropic gelation was used to entrap aceclofenac into algino-pectinate bioadhesive microspheres as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Microspheres were investigatedin vitrofor possible sustained drug release and their usein vivoas a gastroprotective system for aceclofenac. Polymer concentration and polymer/drug ratio were analyzed for their influence on microsphere properties. The microspheres exhibited good bioadhesive property and showed high drug entrapment efficiency. Drug release profiles exhibited faster release of aceclofenac from alginate microspheres whereas algino-pectinate microspheres showed prolonged release. Dunnet's multiple comparison analysis suggested a significant difference in percent inhibition of paw edema when the optimized formulation was compared to pure drug. It was concluded that the algino-pectinate bioadhesive formulations exhibit promising properties of a sustained release form for aceclofenac and that they provide distinct tissue protection in the stomach.


2020 ◽  
Vol 16 (8) ◽  
pp. 1164-1171
Author(s):  
Radhika Verma ◽  
Manju Nagpal ◽  
Thakur G. Singh ◽  
Manjinder Singh ◽  
Geeta Aggarwal

Background: Lovastatin is a statin drug used for lowering cholesterol in those with hypercholesterolemia to reduce the risk of cardiovascular disease. It is a BCS class II drug i.e. it has low aqueous solubility and high permeability. Objective: Improvement of solubility and in vivo efficacy was investigated by formulating binary solid dispersions. Methods: Binary solid dispersions of lovastatin were formulated in the current study using two polymers i.e. Soluplus and PEG 4000. Seven batches of solid dispersions were prepared (S1, P1, SP1, SP2, SP3, SP4, and SP5) via the solvent evaporation method. The prepared dispersions were evaluated for equilibrium solubility, FTIR, XRD, DSC, SEM studies, and further in vitro drug release were evaluated. The results revealed significant enhancement in the solubility of drug-using polymer hybrids as compared to that of individual polymer dispersion batches. Results: A significant solubility enhancement was observed with SP5 (approx 40 times) having a higher concentration of Soluplus. FTIR studies indicated no drug to polymer interaction. DSC studies revealed complete amorphization of polymer and also X-RD data is also in compliance with DSC results. In vitro drug release studies showed almost 100% release in 2h in polymer hybrid batches in comparison to individual polymer batch (S1 and P1). The best dissolution characteristics were observed in SP3 and SP5 which is also in compliance with solubility data. Further in vivo efficacy studies revealed a significant reduction in LDL, HDL, TG, AST, and ALT levels in comparison to pure drug lovastatin group and hypercholesterolemia control group. Conclusion: Hybrid polymer may be a prospective carrier system for the enhancement of solubility of BCS class II drugs.


2016 ◽  
Vol 1 (1) ◽  
pp. 9-16
Author(s):  
Athira K Sunil ◽  
Sarkar K ◽  
Kaushik Chatterjee

Bis 2-Hydroxy Ethyl Terephthalate-based biodegradable poly(mannitol-citric-sebacate) has been synthesized by catalyst-free melt condensation process using two different diacids and Bis 2-Hydroxy Ethyl Terephthalate with D-mannitol as monomers having a potential to be metabolized in vivo. The biocompatibility of the polymer, Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) has been tested using human primary stromal cells. In vitro degradation of Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) polymer in Phosphate Buffered Saline solution carried out at physiological conditions indicates that the degradation goes to completion after 23 days. The usage of Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) polymer as a drug carrier has been analyzed by doping the polymer with Doxorubicin model drug and the release rate has been studied by mass loss over time. The cumulative drug-release profiles exhibit a biphasic release with an initial burst release and cumulative 100 percent release within 14 days.


2021 ◽  
Vol 14 (12) ◽  
pp. 1255
Author(s):  
Ju-Hyun Lee ◽  
Chulhun Park ◽  
Kwon-Yeon Weon ◽  
Chin-Yang Kang ◽  
Beom-Jin Lee ◽  
...  

Itraconazole (ITZ) is a class II drug according to the biopharmaceutical classification system. Its solubility is pH 3-dependent, and it is poorly water-soluble. Its pKa is 3.7, which makes it a weak base drug. The aim of this study was to prepare solid dispersion (SD) pellets to enhance the release of ITZ into the gastrointestinal environment using hot-melt extrusion (HME) technology and a pelletizer. The pellets were then filled into capsules and evaluated in vitro and in vivo. The ITZ changed from a crystalline state to an amorphous state during the HME process, as determined using DSC and PXRD. In addition, its release into the gastrointestinal tract was enhanced, as was the level of ITZ recrystallization, which was lower than the marketed drug (Sporanox®), as assessed using an in vitro method. In the in vivo study that was carried out in rats, the AUC0–48h of the commercial formulation, Sporanox®, was 1073.9 ± 314.7 ng·h·mL−1, and the bioavailability of the SD pellet (2969.7 ± 720.6 ng·h·mL−1) was three-fold higher than that of Sporanox® (*** p < 0.001). The results of the in vivo test in beagle dogs revealed that the AUC0–24h of the SD-1 pellet (which was designed to enhance drug release into gastric fluids) was 3.37 ± 3.28 μg·h·mL−1 and that of the SD-2 pellet (which was designed to enhance drug release in intestinal fluids) was 7.50 ± 4.50 μg·h·mL−1. The AUC of the SD-2 pellet was 2.2 times higher than that of the SD-1 pellet. Based on pharmacokinetic data, ITZ would exist in a supersaturated state in the area of drug absorption. These results indicated that the absorption area is critical for improving the bioavailability of ITZ. Consequently, the bioavailability of ITZ could be improved by inhibiting precipitation in the absorption area.


2016 ◽  
Vol 18 (5) ◽  
pp. 1750-1759 ◽  
Author(s):  
Ahmad Bani-Jaber ◽  
Iyad Alshawabkeh ◽  
Samaa Abdullah ◽  
Imad Hamdan ◽  
Adel Ardakani ◽  
...  

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (08) ◽  
pp. 46-53
Author(s):  
T. A Sande ◽  
◽  
F. J Sayyad ◽  
A. V. Patil ◽  
D. D. Mohite

Proniosomes of ritonavir were prepared by slurry method using Span 60, maltodextrin and cholesterol. The ratio of concentration of Span 60 to cholesterol was altered while keeping concentration of drug and maltodextrin constant. Prepared formulations were studied for micromeritic properties, entrapment efficiency, particle size, surface morphology and in vitro drug release. Micromeritic properties of all formulations increased as compared to drug and carrier alone. Entrapment efficiency was observed greater than 90 % and drug release was found to be sustained for upto 12 hours in case of all formulations. Pure drug, carrier and optimized batch F2 was further characterized for SEM, DSC, XRD. Results revealed transformation of crystalline drug to amorphous state. Stability studies performed at refrigeration and room temperature showed that proniosomes were stable at both the temperatures. It is concluded that proniosomes act as efficient and promising carrier system for ritonavir.


2020 ◽  
Vol 10 (3) ◽  
pp. 330-349
Author(s):  
Raghvendra Chaubey ◽  
Nimisha Srivastava ◽  
Apoorva Singh

Objective: The objective of present study was to enhance the potential activities of Quercetin by improving its solubility and dissolution profiles through solid dispersion approach. Method: A three level full factorial design (32) was adopted to study the possible combinations of polyethylene glycol (PEG) 6000 & pluronic F 127 (PF 127). The solid dispersions were prepared by solvent evaporation method and evaluated for percentage yield, drug content, aqueous solubility and drug release. For in vivo evaluations SD4 was incorporated into Carbopol base gel and subjected to anti-inflammatory activity using carrageenan-induced rat paw edema method. Results: SD4 batch with drug to carrier ratio 1:1 showed release of 82.96 ± 1.76 % in 240 min following Higuchi’s model. It was 5.54 fold increment in solubility as compared to quercetin. SD4 batch was further evaluated by FTIR, DSC, PXRD and SEM. The crystallinity was significantly reduced and drug was homogeneously dispersed in the carrier as shown by the results of DSC, PXRD and SEM. The DPPH scavenging assay showed significance in the IC50 value of SD4 as compared to pure quercetin and ascorbic acid when subjected to one way ANOVA at 0.05 level of significance (P<0.0001). In vivo anti-inflammatory study showed 78.17 ± 0.156 % inhibition of edema by SD4 and 58.64 ± 0.640 % by pure quercetin which is significantly lower (P<0.05). Conclusion: These findings demonstrate that the solid dispersion of quercetin shows increased solubility, dissolution profile, drug release and significant potential in enhancing the antiinflammatory activity of drug.


Sign in / Sign up

Export Citation Format

Share Document