scholarly journals Preparation, in vitro and in vivo evaluation of algino-pectinate bioadhesive microspheres: An investigation of the effects of polymers using multiple comparison analysis

2010 ◽  
Vol 60 (3) ◽  
pp. 255-266 ◽  
Author(s):  
Santanu Chakraborty ◽  
Madhusmruti Khandai ◽  
Anuradha Sharma ◽  
Nazia Khanam ◽  
Ch. Patra ◽  
...  

Preparation,in vitroandin vivoevaluation of algino-pectinate bioadhesive microspheres: An investigation of the effects of polymers using multiple comparison analysisIonotropic gelation was used to entrap aceclofenac into algino-pectinate bioadhesive microspheres as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Microspheres were investigatedin vitrofor possible sustained drug release and their usein vivoas a gastroprotective system for aceclofenac. Polymer concentration and polymer/drug ratio were analyzed for their influence on microsphere properties. The microspheres exhibited good bioadhesive property and showed high drug entrapment efficiency. Drug release profiles exhibited faster release of aceclofenac from alginate microspheres whereas algino-pectinate microspheres showed prolonged release. Dunnet's multiple comparison analysis suggested a significant difference in percent inhibition of paw edema when the optimized formulation was compared to pure drug. It was concluded that the algino-pectinate bioadhesive formulations exhibit promising properties of a sustained release form for aceclofenac and that they provide distinct tissue protection in the stomach.

2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Santanu Chakraborty ◽  
Priyanka Nayak ◽  
Bala Murali Krishna ◽  
Madhusmruti Khandai ◽  
Ashoke Kumar Ghosh

The aim of the present research work was to fabricate aceclofenac loaded pectinate microspheres by ionic gelation method and evaluate the effect of different cross-linking agents and polymer concentration on particle size, encapsulation efficacy and drug release behavior. It was also investigated that whether this pectinate dosage form was able to target the drug release in intestinal region and prevent the different side effect associated with the drug in stomach or not. It was observed that particle size, encapsulation efficacy and in vitro drug release were largely depended on polymer concentration and cross-linking agents. It was also observed that pectinate microspheres showed excellent pH depended mucoadhesive properties and they were able to restrict the drug release in stomach. <em>In vitro</em> drug release study showed that alminium-pectinate microspheres have more sustaining property as compared to barium-pectinate microspheres. Holm-Sidak multiple comparison analysis suggested a significant difference in measured t<sub>50%</sub> values among all the formulations with same cross-linking agent. In vivo studies revealed that the anti inflammatory and analgesic effects induced by pectinate microspheres were significantly high and prolonged as compared to pure drug. So, pectinate microspheres can be an excellent carrier for targeting the delivery of aceclofenac as well as help in improving the patient compliance by prolonging the systemic absorption.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Rajni Bala ◽  
Sushil Khanna ◽  
Pravin Pawar

Clobazam orally dissolving strips were prepared by solvent casting method. A full 32 factorial design was applied for optimization using different concentration of film forming polymer and disintegrating agent as independent variable and disintegration time, % cumulative drug release, and tensile strength as dependent variable. In addition the prepared films were also evaluated for surface pH, folding endurance, and content uniformity. The optimized film formulation showing the maximum in vitro drug release, satisfactory in vitro disintegration time, and tensile strength was selected for bioavailability study and compared with a reference marketed product (frisium5 tablets) in rabbits. Formulation (F6) was selected by the Design-expert software which exhibited DT (24 sec), TS (2.85 N/cm2), and in vitro drug release (96.6%). Statistical evaluation revealed no significant difference between the bioavailability parameters of the test film (F6) and the reference product. The mean ratio values (test/reference) of Cmax (95.87%), tmax (71.42%), AUC0−t (98.125%), and AUC0−∞ (99.213%) indicated that the two formulae exhibited comparable plasma level-time profiles.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


Author(s):  
Bhageerathy A ◽  
Sandhya Murali ◽  
eny Sara Thomas ◽  
Sigi Vasanthkumar ◽  
Prasanth V V

A total of nine formulations of fast dissolving films of Losartan Potassium were developed by solvent casting method using film forming polymers such as HPMC E5, E15 and E50 and other film modifiers. The appearances of films were transparent, thin, flexible, elastic, smooth and transparent. The weight variation ranged between 16.14 ± 0.192 and 17.31 ± 0.313 and showed that there was no significant difference in the weight of individual formulations. All the formulations showed more than 150 of folding endurance. The drug content was found to be in an acceptable range for all the formulations which indicated uniform distribution of drug. A rapid dissolution of all the film was observed by the dissolution test, in which above 90% of Losartan Potassium was released within 5 min. The formulation F1 showed maximum drug release (98.73) within 5 minutes. Based on the in vitro drug release, drug content and in vitro disintegration time it is found that F1 was selected as the best formulation. The formulations showed satisfactory physical stability at 40°C at 75 % RH. Losartan Potassium (LOSAR-25) is shown in Figure 4. From the results of comparative studies of marketed product and it found that F1 showed 98.73% release within 5 min and LOSAR 25 showed 90.76% release in 30 min. In vitro studies indicate that this potential drug delivery system has considerably good stability and release profile. Nevertheless, further in vivo studies are warranted to confirm these results.


2018 ◽  
Vol 16 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Sang Hoon Lee ◽  
Yeo-song Lee ◽  
Jae Geun Song ◽  
Hyo-Kyung Han

Background: Chrysin is a strong inhibitor of breast cancer resistance protein (BCRP) but it is practically insoluble in water. Effective solubilization of chrysin is critical for its pharmaceutical application as an absorption enhancer via inhibition of BCRP-mediated drug efflux. Objective: This study aimed to develop an effective oral formulation of chrysin to improve its in vivo effect as an absorption enhancer. Method: Solid dispersions (SDs) of chrysin were prepared with hydrophilic carriers having surface acting properties and a pH modulator. In vitro and in vivo characterizations were performed to select the optimal SDs of chrysin. Results: SDs with Brij&®L4 and aminoclay was most effective in increasing the solubility of chrysin by 13-53 fold at varying drug-carrier ratios. Furthermore, SDs significantly improved the dissolution rate and extent of drug release. SDs (chrysin: Brij&®L4: aminoclay=1:3:5) achieved approximately 60% and 83% drug release within 1 h and 8 h, respectively, in aqueous medium, while the dissolution of the untreated chrysin was less than 13%. XRD patterns indicated the amorphous state of chrysin in SDs. The SD formulation was effective in improving the bioavailability of topotecan, a BCRP substrate in rats. Following oral administration of topotecan with the SDs of chrysin, the Cmax and AUC of topotecan was enhanced by approximately 2.6- and 2-fold, respectively, while the untreated chrysin had no effect. Conclusion: The SD formulation of chrysin with Brij&®L4 and aminoclay appeared to be promising in improving the dissolution of chrysin and enhancing its in vivo effect as an absorption enhancer.


2020 ◽  
Vol 26 (44) ◽  
pp. 5755-5763
Author(s):  
Kaleem Ullah ◽  
Shujaat Ali Khan ◽  
Muhammad Sohail ◽  
Abdul Mannan ◽  
Ghulam Murtaza

Background: Oxaliplatin (OXP), a 3rd generation platinum compound, which causes severe side effects due to; impulse high concentration in the bloodstream thereby exposing healthy cells at a high ratio, nonspecific delivery at the target site and non-compliance is administered intravenously. Objective: The project was aimed at the development, characterization, and in-vitro and in-vivo evaluation of pHresponsive hydrogels for oral administration of OXP. Methods: Hydrogel formulations were synthesized through a free radical polymerization technique followed by brief characterization using various techniques. The hydrogels were investigated for various in-vitro studies such as sol-gel, drug loading, swelling, drug release, and MTT-assay. While in-vivo studies such as oral tolerability, histopathology, and hematology studies were performed on rabbits. A simple and sensitive HPLC-UV method was optimized and the comparative pharmacokinetic study was performed in rabbits using OXP-oral solution and OXP-loaded hydrogels. Results: In-vitro characterization confirmed that the reactant was successfully crosslinked to form thermally stable hydrogels with decreased crystallinity and rough surface. Swelling and drug release showed that hydrogels were more responsive to basic pH (6.8 and 7.4) in comparison with pH 1.2. The blank hydrogels were cytocompatible as more than 95% of the cells were viable while free OXP and OXP-loaded hydrogels displayed dosedependent cytotoxic effect. In-vivo studies confirmed that chitosan and gelatin hydrogel suspension was well tolerable up to 3800 mg/kg and 4000 mg/kg of body weight, respectively. Hematology and serum chemistry reports were well within the range suggesting normal liver and kidney functions. Similarly, histopathology slides of rabbit vital organs were also found normal without causing any histopathological change. Conclusion: HPLC-UV method was successfully optimized for OXP detection in oral solution and hydrogels administered to rabbits. A significant difference was found among various pharmacokinetic parameters by comparing the two groups including half-life (t1/2), tmax, Cmax, AUCtot MRT, Vz, and Lz.


2019 ◽  
Vol 54 (2) ◽  
pp. 169-176
Author(s):  
H Kassahun ◽  
K Asres ◽  
A Ashenef

In this study, an attempt was made to assess quality as well as pharmaceutical equivalence of six brands of metformin hydrochloride tablets marketed in Addis Ababa using in vitro methods. Friability, disintegration, dissolution and assay for the content of active ingredients were evaluated using the methods described in the United States pharmacopeia (2007). All the brands of metformin hydrochloride tablets complied with the official specification for hardness, friability, disintegration and assay. Five brands of metformin hydrochloride complied with the USP dissolution tolerance limits but Metformin Denk failed to release the stated amount. Statistical comparison for in vitro drug release indicates that some of the products of metformin hydrochloride tablets showed significant difference (P<0.05), indicating difference in their in vitro drug release that might affect the in vivo bioavailability and the bioequivalence of the products. Bangladesh J. Sci. Ind. Res.54(2), 169-176, 2019


2016 ◽  
Vol 1 (1) ◽  
pp. 9-16
Author(s):  
Athira K Sunil ◽  
Sarkar K ◽  
Kaushik Chatterjee

Bis 2-Hydroxy Ethyl Terephthalate-based biodegradable poly(mannitol-citric-sebacate) has been synthesized by catalyst-free melt condensation process using two different diacids and Bis 2-Hydroxy Ethyl Terephthalate with D-mannitol as monomers having a potential to be metabolized in vivo. The biocompatibility of the polymer, Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) has been tested using human primary stromal cells. In vitro degradation of Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) polymer in Phosphate Buffered Saline solution carried out at physiological conditions indicates that the degradation goes to completion after 23 days. The usage of Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) polymer as a drug carrier has been analyzed by doping the polymer with Doxorubicin model drug and the release rate has been studied by mass loss over time. The cumulative drug-release profiles exhibit a biphasic release with an initial burst release and cumulative 100 percent release within 14 days.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (09) ◽  
pp. 23-30
Author(s):  
P Bhardwaj ◽  
◽  
R Singh ◽  
A Swarup

Object of present investigation was to develop and characterize such a gastroretentive tablet, which provides the synergism effect of adhesiveness and floating property for prolonged release of 5-flourouracil within the stomach. The floating mucoadhesive tablets were prepared by the wet granulation method using different ratios of hydroxy propyl methyl cellulose (HPMC K4MCR) and Carbopol 934P as polymers. The prepared floating-mucoadhesive tables were characterized for hardness, detachment stress, floating properties, swelling index and surface morphology by SEM. The in vitro drug release and floating behaviour were studied in simulated gastric fluid (SGF) at pH 1.2. Different kinetic models for drug release were as well applied. Formulations of T-9 batch were furthermore subjected to stability and in vivo radiographic studies.


Sign in / Sign up

Export Citation Format

Share Document