Quantification of Newly Discovered Anti-Cancer Drug Enzalutamide in Bulk and Synthetic Mixture by Stability Indicating TLC Method

2019 ◽  
Vol 16 (1) ◽  
pp. 104-112
Author(s):  
Dharmendra Jayantibhai Prajapati ◽  
Usmangani Khalilurraheman Chhalotiya ◽  
Minesh Dahyabhai Prajapati ◽  
Jalpa Upendrabhai Patel ◽  
Jaineel Vinodrai Desai

Objective: An impressionable, discriminatory and precise stability indicating high performance thin layer chromatographic method has been developed and validated for the estimation of Enzalutamide in bulk and synthetic mixture. Method: The method engaged HPTLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase while the solvent system was ethyl acetate: toluene (4.5:5.5, v/v). The Rf value of enzalutamide was detected to be 0. 39 &amp;#177; 0. 005 and the densitometric analysis was carried out in absorbance mode at 246 nm. The linear regression analysis data for the calibration plots presented a virtuous linear relationship for enzalutamide over a concentration range of 20 - 1000ng/band. Results: The limit of detection and limit of quantification for enzalutamide was found to be 9.05 and 27.43 ng/band. Enzalutamide was imperilled to acid and alkali hydrolysis, chemical oxidation, dry heat degradation and photolytic degradation. The degraded product peaks were well resolved from the pure drug peak with substantial difference in their Rf values. Conclusion: Stressed samples were assayed using developed TLC technique. Suggested method was validated with respect to linearity, accuracy, precision and robustness. The method was successfully applied to the estimation of enzalutamide in synthetic mixture.<P&gt;

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Atul S. Rathore ◽  
Lohidasan Sathiyanarayanan ◽  
Kakasaheb R. Mahadik

A simple, sensitive, precise, specific and stability indicating high-performance thin-layer chromatographic (HPTLC) method for the determination of emtricitabine both in bulk drug and pharmaceutical dosage form was developed and validated. The method employed aluminium plates precoated with silica gel G60 F254 as the stationary phase. The solvent system consisted of toluene : ethyl acetate : methanol (2 : 8 : 1, v/v/v). This solvent system was found to give compact spots for emtricitabine with value . Densitometric analysis of emtricitabine was carried out in the absorbance mode at 284 nm. Linear regression analysis showed good linearity with respect to peak area in the concentration range of 30–110 ng spot−1. The method was validated for precision, limit of detection (LOD), limit of quantitation (LOQ), robustness, accuracy and specificity. Emtricitabine was subjected to acid and alkali hydrolysis, oxidation, neutral hydrolysis, photodegradation and dry heat treatment. Also the degraded products peaks were well resolved from the pure drug with significantly different values. Statistical analysis proved that the method is repeatable and specific for the estimation of the said drug. As the method could effectively separate the drugs from their degradation products, it can be employed as a stability indicating method.


Author(s):  
D. S. Ghotekar ◽  
Vishal N. Kushare

The present paper describes stability indicating high-performance thin-layer chromatography (HPTLC) assay method for clopidogrel in bulk drugs. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of toluene: methanol: triethylamine (6.5: 4.0: 0.1 v/v/v). The system was found to give compact spot for Clopidogrel (<em>R</em><sub>f</sub>value of 0.40 ± 0.010). Densitometric analysis of Clopidogrel was carried out in the absorbance mode at 254 nm. The linear regression analysis data for the calibration plots showed good linear relationship with <em>r</em>2 = 0.999 with respect to peak area in the concentration range 30 - 120 ng/spot. The developed HPTLC method was validated with respect to accuracy, precision, recovery and robustness. Also to determine related substance and assay determination of Clopidogrel that can be used to evaluate the quality of regular production samples. The developed method can also be conveniently used for the assay determination of Clopidogrel .The limits of detection and quantitation were 4.062and 12.322ng/spot, respectively by height.


Author(s):  
Sunil Kaushik ◽  
Mohammad Asif

Solanesol is the starting material for many high value biochemicals, including Co-enzyme Q10 and vitamin-K analogues. The aim of the current study was to develop and validate a reliable and fast analytical procedure for the determination of solanesol in Nicotianatabacum using high-performance thin layer chromatography (HPTLC) method. The method was developed on TLC aluminium plates precoated with silica gel 60F-254 using solvent system hexane: ethyl acetate (5:1, v/v), which gives compact spot of solanesol (Rf value 0.41 ± 0.02). Densitometric analysis of solanesol was carried out in the absorbance mode at 210 nm. The linear regression analysis data for the calibration plot showed good linear relationship with r = 0.9978 with respect to peak area, in the concentration rang 100-5000 ng per spot of solanesol. The limit of detection and quantification were 13 and 30 ng per spot, respectively. The proposed method was applied for quantitative estimation of solanesol in different parts of Nicotianatabacum from different geographical regions in India, which showed that maximum amount of solanesol was found to be present in leaf sample collected from Karnataka i.e. 3.52 mg/g. Statistical analysis proved that the method is repeatable, selective and accurate for the estimation of solanesol in Nicotianatabacum.


2020 ◽  
Vol 11 (03) ◽  
pp. 310-316
Author(s):  
Kallol S Jana ◽  
Beduin Mahanti

A simple high performance liquid chromatography (HPLC) method was developed for the assay of bemotrizinol (Tinosorb-S) from the complex pharmaceutical cosmetics matrix. Unlike the existing methods, the proposed mobile phase used in this method is very simple and excluding buffer. The use of buffer reducing column longevity and also a time-consuming process which increases the cost of analysis. To overcome all the referred problems, the present article was developed and validated as per International Council for Harmonization (ICH) guidelines. The reverse-phase chromatography was performed on Shimadzu model no. SPD-M10A VP with LC solution software, μBondapack (3.9 × 300 mm, 10-micron particle size) column with methanol (100%) as mobile phase at a flow rate 2.5 mL per minutes and UV detection at 254 nm. The retention time of bemotrizinol was found in 17.599 minutes, and the linear regression analysis data for the calibration plots showed a good linear relationship in the concentration range 70 to 130 μg/mL. The value of the correlation coefficient, slope, and intercept were 0.996, 7,715, and 15,320, respectively. The limit of quantification (LoQ) and limit of detection (LoD) were found to be 1.32 and 0.44, respectively. The relative standard deviation (RSD) for intra-day sample A 1.0858, sample B 0.8859, and inter-day sample A 0.9921, sample B 0.967 which were found to be lesser than 2%. The developed method was validated with regard to linearity, accuracy, precision, selectivity, and robustness, and the method was found to be simple, cost-effective, precise, accurate, linear, and specific for the successful identification and determination of bemotrizinol in pharmaceutical cosmetic preparation.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. B. Bari ◽  
A. R. Bakhshi ◽  
P. S. Jain ◽  
S. J. Surana

A simple, economic, selective, precise, and stability-indicating high-performance thin-layer chromatographic method for analysis of tamsulosin hydrochloride, both as a bulk drug and in formulations, was developed and validated according to ICH guidelines. The method employed HPTLC aluminium plates precoated with silica gel 60F-254 as the stationary phase while the solvent system consisted of toluene  :  methanol  :  triethylamine (3.5  :  1.2  :  0.2 v/v). The system was found to give compact spot for drug ( value of ). Densitometric analysis of tamsulosin was carried out in the absorbance mode at 280 nm. The linear regression analysis data for the calibration plots showed good linear relationship, with respect to peak area in the concentration range 400–2400 ng per spot. The mean value ± SD of slope and intercept were and with respect to peak area. The method was validated for precision, recovery, and robustness. The limits of detection and quantitation were 20.49 and 62.10 ng per spot, respectively. Tamsulosin was subjected to hydrolysis, oxidation, and thermal degradation which indicate the drug is susceptible to hydrolysis, oxidation, and heat. Statistical analysis proves that the method is repeatable, selective, and accurate for the estimation of tamsulosin.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (10) ◽  
pp. 34-39
Author(s):  
◽  
Elakkiya L Shunmuganathan ◽  
F. A Mehta ◽  
U. K. Chhalotiya

A simple, sensitive, and precise high-performance thin-layer chromatographic method has been developed for the estimation of Ticagrelor in pharmaceutical dosage form. The method employed Thin-layer chromatography (TLC) aluminum plates precoated with silica gel 60 F254 as the stationary phase, while the solvent system was found to be toluene: ethyl acetate: acetic acid (5:4:1V/V/V). The Rf value was observed to be 0.33± 0.008. The spot was densitometrically analyzed in absorbance mode at 305 nm. The method was linear in the range of 50-250 ng/ band for ticagrelor. The limit of detection for ticagrelor was found to be 0.826 ng/ band. The limit of quantification for ticagrelor was found to be 2.64 ng/band. Ticagrelor stock solution was subjected to acid and alkali hydrolysis, chemical oxidation, dry heat degradation and photo degradation. The degraded product peaks were well resolved from the pure drug peak with significant difference in their Rf values. Stressed samples were assayed using developed HPTLC method. The proposed method was validated with respect to linearity, accuracy, precision and robustness. The method was successfully applied to the estimation of ticagrelor in its formulation.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


Author(s):  
Anas Rasheed ◽  
Osman Ahmed

A specific, precise, accurate ultra pressure liquid chromatography (UPLC) method is developed for estimation of chlophedianol hydrochloride in bulk drug and syrup dosage form. The method employed with Hypersil BDS C18 (100 mm x 2.1 mm, 1.7 μm) in a gradient mode, with mobile phase of methanol and acetonitrile in the ratio of 65:35 %v/v. The flow rate was 0.1 ml/min and effluent was monitored at 254 nm. Retention time was found to be 1.130±0.005 min. The method was validated in terms of linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ)in accordance with ICH guidelines. Linear regression analysis data for the calibration plot showed that there was good linear relationship between response and concentration in the range of 20-100 μg/ml respectively. The LOD and LOQ values were found to be 2.094(μg/ml)and 6.3466(μg/ml)respectively. No chromatographic interference from syrup excipients and degradants were found. The proposed method was successfully used for estimation of chlophedianol hydrochloride in syrup dosage form.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Myriam Ajemni ◽  
Issa-Bella Balde ◽  
Sofiane Kabiche ◽  
Sandra Carret ◽  
Jean-Eudes Fontan ◽  
...  

A stability-indicating assay by reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of pentobarbital sodium in oral formulations: a drug used for infant sedation in computed tomography (CT) or magnetic resonance imaging (MRI) scan. The chromatographic separation was achieved on a reversed-phase C18 column, using isocratic elution and a detector set at 214 nm. The optimized mobile phase consisted of a 0.01 M potassium buffer pH 3 and methanol (40 : 60, v/v). The flow rate was 1.0 mL/min and the run time of analysis was 5 min. The linearity of the method was demonstrated in the range of 5 to 250 μg/mL pentobarbital sodium solution (r2= 0.999). The limit of detection and limit of quantification were 2.10 and 3.97 μg/mL, respectively. The intraday and interday precisions were less than 2.1%. Accuracy of the method ranged from 99.2 to 101.3%. Stability studies indicate that the drug is stable to sunlight and in aqueous solution. Accelerated pentobarbital sodium breakdown by strong alkaline, acidic, or oxidative stress produced noninterfering peaks. This method allows accurate and reliable determination of pentobarbital sodium for drug stability assay in pharmaceutical studies.


2012 ◽  
Vol 18 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Usmangani Chhalotiya ◽  
Kashyap Bhatt ◽  
Dimal Shah ◽  
Sunil Baldania ◽  
Jigar Patel

An isocratic stability indicating reversed-phase liquid chromatographic determination was developed for the quantitative determination of lacosamide in the pharmaceutical dosage form. A Hypersil C-18, 4.5?m column with mobile phase containing acetonitrile-water (20:80, v/v) was used. The flow rate was 1.0 mL min-1 and effluents were monitored at 258 nm. The retention time of lacosamide was 8.9 min. The method was found to be linear in the concentration range of 5-100 ?g/ml and the recovery was found to be in the range of 99.15 - 100.09 %. The limit of detection and limit of quantification were found to be 2 ?g/ml and 5 ?g/ml, respectively. Lacosamide stock solutions were subjected to acid and alkali hydrolysis, chemical oxidation and dry heat degradation. The drug was found to be stable to the dry heat and acidic condition attempted. The proposed method was validated and successfully applied to the estimation of lacosamide in tablet dosage forms.


Sign in / Sign up

Export Citation Format

Share Document