Microbial Electrosynthesis of Methane: Challenges and Recent Progresses

2016 ◽  
Vol 3 (3) ◽  
pp. 235-250
Author(s):  
M.G. Buonomenna
ChemPlusChem ◽  
2021 ◽  
Author(s):  
Konstantina-Roxani Chatzipanagiotou ◽  
Virangni Soekhoe ◽  
Ludovic Jourdin ◽  
Cees Buisman ◽  
Harry Bitter ◽  
...  

2014 ◽  
Vol 80 (8) ◽  
pp. 2410-2416 ◽  
Author(s):  
Areen Banerjee ◽  
Ching Leang ◽  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACTThe development of tools for genetic manipulation ofClostridium ljungdahliihas increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox forC. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported forClostridium perfringens, was investigated. The plasmid pAH2, originally developed forC. perfringenswith agusAreporter gene, functioned as an effective lactose-inducible system inC. ljungdahlii. Lactose induction ofC. ljungdahliicontaining pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression ofadhE130-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression ofadhE1in a strain in whichadhE1and theadhE1homologadhE2had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression ofadhE2similarly failed to restore ethanol production, suggesting thatadhE1is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102094
Author(s):  
Rusen Zou ◽  
Aliyeh Hasanzadeh ◽  
Alireza Khataee ◽  
Xiaoyong Yang ◽  
Mingyi Xu ◽  
...  

2016 ◽  
Vol 217 ◽  
pp. 117-122 ◽  
Author(s):  
Nabin Aryal ◽  
Arnab Halder ◽  
Pier-Luc Tremblay ◽  
Qijin Chi ◽  
Tian Zhang

2021 ◽  
pp. 131885
Author(s):  
Young Eun Song ◽  
Abdelrhman Mohamed ◽  
Changman Kim ◽  
Minsoo Kim ◽  
Shuwei Li ◽  
...  

2022 ◽  
Vol 428 ◽  
pp. 132093
Author(s):  
Wenfang Cai ◽  
Kai Cui ◽  
Zhuangzhuang Liu ◽  
Xiaodan Jin ◽  
Qingyun Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document