electrolytic hydrogen
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 61)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 428 ◽  
pp. 132093
Author(s):  
Wenfang Cai ◽  
Kai Cui ◽  
Zhuangzhuang Liu ◽  
Xiaodan Jin ◽  
Qingyun Chen ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11911
Author(s):  
Prajwal Adiga ◽  
Nathan Doi ◽  
Cindy Wong ◽  
Daniel M. Santosa ◽  
Li-Jung Kuo ◽  
...  

Electrocatalytic water splitting is a possible route to the expanded generation of green hydrogen; however, a long-term challenge is the requirement of fresh water as an electrolyzer feed. The use of seawater as a direct feed for electrolytic hydrogen production would alleviate fresh water needs and potentially open an avenue for locally generated hydrogen from marine hydrokinetic or off-shore power sources. One environmental limitation to seawater electrolysis is the generation of chlorine as a competitive anodic reaction. This work evaluates transition metal (W, Co, Fe, Sn, and Ru) doping of Mn-Mo-based catalysts as a strategy to suppress chlorine evolution while sustaining catalytic efficiency. Electrochemical evaluations in neutral chloride solution and raw seawater showed the promise of a novel Mn-Mo-Ru electrode system for oxygen evolution efficiency and enhanced catalytic activity. Subsequent stability testing in a flowing raw seawater flume highlighted the need for improved catalyst stability for long-term applications of Mn-Mo-Ru catalysts. This work highlights that elements known to be selective toward chlorine evolution in simple oxide form (e.g., RuO2) may display different trends in selectivity when used as isolated dopants, where Ru suppressed chlorine evolution in Mn-based catalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1413
Author(s):  
Jiseon Kim ◽  
Chong Min Chung ◽  
Kangwoo Cho ◽  
Tai Hak Chung

Molecular hydrogen (H2), as the green energy carrier from water electrolysis, can be utilized for separation of suspended micro-particles as electroflotation (EF). This study provides practical guidelines for the gas to solids (G/S) ratio as the governing parameter in EF, based on theoretical estimations and experiments for clarification of activated sludge. The G/S ratio in EF was controlled linearly by current density (j), under quasi-consistent current efficiency (at j > 8 mA/cm2) for H2 (~1) and O2 (~0.4) bubble generations on Ti cathode and IrTaOx anode, respectively. Based on the measured sizes of bubbles (approximated to 35 µm) and biological flocs (discretized to mean sizes of 22.5, 40, 60, 135, and 150 µm), batch flotation experiments estimated the maximum collision-attachment efficiency of 0.057. The rise velocities of floc-bubble aggregate were computed to derive the limiting G/S ratio to overcome the given influent hydraulic loading. Consequently, the estimates (5.23 × 10−4 and 5.92 × 10−4 at hydraulic loading of 0.87 and 1.73 cm/min, respectively) were compatible with the continuous EF experiments.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 810
Author(s):  
Mohd Fadhzir Ahmad Kamaroddin ◽  
Nordin Sabli ◽  
Tuan Amran Tuan Abdullah ◽  
Shamsul Izhar Siajam ◽  
Luqman Chuah Abdullah ◽  
...  

Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review, various types of water splitting technologies, and membrane selection for electrolyzers, are discussed. We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis for hydrogen production. Previously, the NafionTM membrane was the gold standard for PEM electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl electrolysis and its operating parameters are summarized. Additionally, a summary is presented of hydrogen production by water splitting, including a discussion of the advantages, disadvantages, and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study, especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address the challenges, prospects, and future trends in this field of research, and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.


2021 ◽  
Vol 11 (20) ◽  
pp. 9582
Author(s):  
Celia Gómez-Sacedón ◽  
Ester López-Fernández ◽  
Ana Raquel de la Osa-Puebla ◽  
Fernando Dorado-Fernández ◽  
Ernesto Amores-Vera ◽  
...  

The use of renewable energy and hydrogen technology is a sustainable solution for the intermittent feature of renewable energies. Hence, the aim of the present work is to design a self-sufficient system for a one-family house by coupling a solar photovoltaic array and an anion exchange membrane water electrolyzer (AEMWE). The first step is the selection of the photovoltaic panel by using PV-SYST 7.0 software. Then, the hydrogen production system is calculated by coupling the electrolyzer and photovoltaic panel current–potential curves. A fuel cell is selected to use the hydrogen produced when solar energy is not available. Finally, the hydrogen storage tank is also estimated to store hydrogen for a design basis of four consecutive cloudy days according to the hydrogen consumption of the fuel cell. The whole system is designed by a simple procedure for a specific location in Ciudad Real (Spain) for January, which is known as the coldest month of the year. The simple procedure described in this work could be used elsewhere and demonstrated that the hydrogen production at low scale is a suitable technology to use renewable energy for self-energy supporting in a residential application without any connection to the grid.


2021 ◽  
Vol 2 ◽  
Author(s):  
Olga Kanz ◽  
Karsten Bittkau ◽  
Kaining Ding ◽  
Uwe Rau ◽  
Angèle Reinders

This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions, strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries, system sizes, evaluation methods, and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process, 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review, full identification of the sources of discrepancies (methods applied, assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems, it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.


Sign in / Sign up

Export Citation Format

Share Document