Microwave Assisted, Antimicrobial Activity and Molecular Modeling of Some Synthesized Newly Pyrimidine Derivatives Using 1, 4- diazabicyclo[2.2.2]octane as a Catalyst

2020 ◽  
Vol 17 (12) ◽  
pp. 1538-1551
Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Rania Badaway Bakr

Background: Pyrimidine ring is one of the most important heterocyclic scaffolds due to its biological benefits as antimicrobial agents via acting as competitive suppressors of dihydropteroate synthase (DHPS) enzyme, inhibiting dihydrofolate reductase or glucosamine N-phosphate synthase. Objective: The objective of this work is preparing twenty four derivatives of pyrimidine heterocycle 1a-f, 2a-f, 3a-f and 4a-f via a facile one step reaction with antimicrobial potential. Methods: Novel twenty four derivatives of pyrimidine heterocycle 1a-f, 2a-f, 3a-f and 4a-f were prepared via a facile one step reaction by treating substituted aldehydes, urea and / or thiourea and active methylene derivatives (diethyl malonate and / or ethyl cyanoacetate) using 1,4- diazabicyclo[2.2.2]octane (DABCO) as a basic catalyst. The chemical structures of all these novel targets were proved by 1HNMR, 13CNMR, MS and elemental analyses. All the twenty four new targets 1a-f, 2a-f, 3a-f and 4a-f were assessed for their antimicrobial activity towards bacteria as Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli and against fungi represented by Aspergillus flavus and Candida albicans. Results: Most of the compounds exhibited very good antimicrobial activity, especially; compound (1c) exhibited the most activity against three types of bacteria Escherichia coli, Bacillus subtilis, Staphylococcus aureus. Moreover, this derivative 1c displayed similar antifungal activity towards Candida albicans as that exhibited by amphotericin B. Conclusion: All the screened compounds 1a-f, 2a-f, 3a-f and 4a-f showed antibacterial activity with inhibition zone diameter range 6-21 mm/mg, while, regarding the antifungal activity, all the novel derivatives except 2b, 2d, 3a, 3c, 3e did not have any effect towards Aspergillus flavus and 3d did not reveal any inhibitory activity towards both fungal species.

2005 ◽  
Vol 60 (1-2) ◽  
pp. 35-38 ◽  
Author(s):  
Meral Yılmaz ◽  
Turgay Tay ◽  
Merih Kıvanç ◽  
Hayrettin Türk ◽  
Ayşen Özdemir Türk

The antimicrobial activity and the MIC values of the diethyl ether, acetone, chloroform, petroleum ether, and ethanol extracts of the lichen Hypogymnia tubulosa and its 3-hydroxyphysodic acid constituent have been investigated against some microorganisms. At least one of the extracts or 3-hydroxyphysodic acid showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Proteus vulgaris, Salmonella typhimurium, Staphylococcus aureus, Streptococcus faecalis, and Candida albicans. No antifungal activity of the extracts has been observed against ten filamentous fungi.


Medicina ◽  
2008 ◽  
Vol 44 (12) ◽  
pp. 977 ◽  
Author(s):  
Alvydas Pavilonis ◽  
Algirdas Baranauskas ◽  
Ligita Puidokaitė ◽  
Žaneta Maželienė ◽  
Arūnas Savickas ◽  
...  

Objective. To evaluate the antimicrobial activity of soft and purified propolis extracts. Study object and methods. Antimicrobial activity of soft and purified propolis extracts was determined with reference cultures of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035, and fungus Candida albicans ATCC 60193. Microbiological tests were performed under aseptic conditions. Minimum inhibitory concentration (MIC) – the highest dilution of preparation (the lowest concentration of preparation) that suppresses growth of reference microorganisms – was determined. Results. Concentration of phenolic compounds in soft propolis extract that possesses antimicrobial activity against gram-positive (Staphylococcus aureus, Enterococcus faecalis) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis) is 0.587±0.054 mg and 0.587±0.054–0.394±0.022 mg (P>0.05) and in purified propolis extract – 0.427±0.044 mg and 0.256±0.02 mg (P>0.05). Klebsiella pneumoniae is most resistant to soft propolis extract when the concentration of phenolic compounds is 1.119± 0.152 mg and to purified propolis extract when the concentration of phenolic compounds is 1.013±0.189 mg (P>0.05). Spore-forming Bacillus subtilis bacteria are more sensitive to soft and purified propolis extracts when the concentration of phenolic compounds is 0.134±0.002 mg and 0.075±0.025 mg, respectively, and Bacillus cereus – when the concentration is 0.394±0.022 mg and 0.256±0.02 mg (P>0.05). Sensitivity of fungus Candida albicans to soft and purified propolis extracts is the same as Bacillus subtilis. Encapsulated bacterium Klebsiella pneumoniae is most resistant to antimicrobial action of soft and purified propolis extracts as compared with gram-positive Staphylococcus aureus and Enterococcus faecalis bacteria (P<0.05), gram-negative Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis (P<0.05), sporeforming Bacillus subtilis and Bacillus cereus bacteria (P<0.05), and fungus Candida albicans (P<0.05). There is no statistically significant difference between antimicrobial effect of soft propolis extract and purified propolis extract on gram-positive bacteria, gram-negative bacteria, spore-forming bacteria, encapsulated bacteria, and Candida fungus. Conclusions. Soft and purified propolis extracts possess antimicrobial activity. They could be recommended as natural preservatives in the manufacture of pharmaceutical products.


Medicina ◽  
2011 ◽  
Vol 47 (3) ◽  
pp. 24 ◽  
Author(s):  
Vilma Jurkštienė ◽  
Alvydas Pavilonis ◽  
Daiva Garšvienė ◽  
Algirdas Juozulynas ◽  
Laimutė Samsonienė ◽  
...  

The aim of the study was to determine antimicrobial activity of rhaponticum and shrubby cinquefoil extracts. Material and Methods. Ethanol extract from the leaves of rhaponticum (Rhaponticum carthamoides D.C. Iljin) and shrubby cinquefoil (Potentilla fruticosa L.) was produced at the Department of Food Technology, Kaunas University of Technology. The antimicrobial activity of the viscous extract or rhaponticum and shrubby cinquefoil was evaluated using standard microorganism cultures (bacteria Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035 and fungi Candida albicans ATCC 60193). The minimum inhibitory concentration (MIC) of the examined preparations was determined. Results. Both studied preparations – rhaponticum (Rhaponticum carthamoides D.C. Iljin) and shrubby cinquefoil (Potentilla fruticosa L.) – demonstrated similar antimicrobial activity. The highest sensitivity to the studied preparations was observed in microbes with eukaryotic cell structure: Candida albicans, which is a fungus, and a spore-forming prokaryotic bacterium, Bacillus cereus. The highest resistance was observed in Escherichia coli and Klebsiella pneumoniae. Conclusions. The studied preparations – viscous extracts of rhaponticum and shrubby cinquefoil – are substances with antimicrobial activity against gram-positive (Staphylococcus aureus and Enterococcus faecalis) and gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis) bacteria, spore-forming bacteria (Bacillus subtilis and Bacillus cereus), and fungi (Candida albicans).


2021 ◽  
Vol 68 (3) ◽  
pp. 541-547
Author(s):  
Fu-Ming Wang ◽  
Li-Jie Li ◽  
Guo-Wei Zang ◽  
Tong-Tong Deng ◽  
Zhong-Lu You

A series of five new fluoro-substituted aroylhydrazones were prepared and structurally characterized by elemental analysis, IR, UV-Vis and 1H NMR spectroscopy, as well as single crystal X-ray diffraction. The compounds were evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) and antifungal (Candida albicans and Aspergillus niger) activities by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method. The biological assay indicated that the presence of the electron-withdrawing groups in the aroylhydrazones improved their antimicrobial activities.


2016 ◽  
Vol 78 (6-8) ◽  
Author(s):  
Noor Izzatie Munira Kamaruddin ◽  
Nor Azah Mohamad Ali ◽  
Muhd Fauzi Safian ◽  
Zaidah Zainal Ariffin

Polyalthia stenopetala essential oils were extracted by hydrodistillation from the leaves and were analyzed using gas chromatography-flame ionization detector (GC-FID) and gas chromatography/mass spectrometry (GC/MS) system. Thirty one compounds were identified from the analysis. The most abundant components in the leaves oil are curzerene (37.56%) followed by viridiflorol (11.59%), germacrene B (3.77%) and aromadendrene (4.01%). The antimicrobial activity of the oil essential oils was determined with disk diffusion method and minimum inhibitory concentration (MIC) assay. Four bacteria, Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC 25922) Psedomonas aeruginosa (ATCC 10145) and two yeasts, Candida albicans (ATCC 10231) and Saccharomyces cerevisiae (ATCC 4098) were selected. The crude oil shows the most reactivity against B. subtilis (ATCC 6633) and C. albicans (ATCC 10231) with an inhibitory zone of 11mm. The minimum inhibitory concentration (MIC) of sample against Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC 25922) Psedomonas aeruginosa (ATCC 10145) and Candida albicans (ATCC 10231) in range of 0.5 mg/ml – 1.0 mg/ml which can categorized as strong.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Meruyert I. Tleubayeva ◽  
Ubaidilla M. Datkhayev ◽  
Mereke Alimzhanova ◽  
Margarita Yu Ishmuratova ◽  
Nadezhda V. Korotetskaya ◽  
...  

In the medicine of many countries, the use of herbal healing agents included a significant contribution to improving human health and well-being. Many antibiotics have been widely used to treat infectious diseases caused by various pathogenic bacteria. However, increased multidrug resistance has led to increased severity of diseases caused by bacterial pathogens. Bacteria remain the main causative agents of diseases that cause human death, even in the present day. This cause prompted scientists to investigate alternative new molecules against bacterial strains. The significant interest for the study is Portulaca oleracea L. (family Portulacaceae), a widespread annual plant used in folk medicine. Thus, the production and study of CO2 extract of Portulaca oleracea is an actual problem. Methods. Raw materials were collected from Almaty and Zhambyl regions (Southeast and South Kazakhstan) in phase flowering. Portulaca oleracea herb’s CO2 extract was obtained by subcritical carbon dioxide extraction (installation of carbon dioxide flow-through extraction- 5L). The Wiley 7th edition and NIST’02 library were used to identify the mass spectra obtained. The antimicrobial activity study was conducted by the micromethod of serial dilution and disco-diffuse method. Standard test strains of microorganisms were used: Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538-P, Candida albicans ATCC 10231, and Escherichia coli ATCC 8739. Results. The use of carbon dioxide extraction (further CO2 extract) is a promising direction of obtaining total medicinal substances containing biologically active substances, from fractions of volatile esters of various composition and functional purpose until a fraction of fatty acids and fat-soluble vitamins. In the current study, we obtained CO2 extract at subcritical conditions from aboveground organs of Portulaca oleracea and investigated the component composition for the first time. From 41 to 66 components were identified in the composition of Portulaca oleracea‘s CO2 extract. Studies of antimicrobial activity showed that CO2 extract of Portulaca oleracea had the expressed effect against clinically significant microorganisms such as Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Conclusions. This study showed that CO2 extract of Portulaca oleracea’s raw material contained biological active compounds exhibiting a significant antimicrobial effect.


2018 ◽  
Vol 42 (6) ◽  
pp. 332-336 ◽  
Author(s):  
Sayed K. Ramadan ◽  
Eman A. E. El-Helw

6-Chloro-3-((2-oxo-5-phenylfuran-3(2 H)-ylidene)methyl)-4 H-chromen-4-one was utilised for the construction of N-heterocycles. The proclivity of this furanone towards some nitrogen nucleophiles, i.e. glycine, thiosemicarbazide, thiocarbohydrazide, phenylhydrazine and o-phenylenediamine, was studied. The structures of all products obtained were established on the basis of their analytical and spectral data. All synthesised compounds were screened for their in vitro antibacterial (two strains of bacteria; Escherichia coli and Staphylococcus aureus) and antifungal (two fungus strains; Aspergillus flavus and Candida albicans) activities. Some products exhibited promising antimicrobial activities.


2021 ◽  
Vol 10 (3) ◽  
pp. 61-71
Author(s):  
Raman Belge ◽  
Rameshwar Pandey ◽  
Prakash Itankar

Background: Vanga Bhasma is said to possess antimicrobial activity (Jantughna Prabhava). Hence it was decided to evaluate the antimicrobial activity of Jarit Vanga Bhasma (JVB) prepared with special reference to Rasatarangini 18/29-33. Objectives: JVB was synthesized, analysed and its antimicrobial effects were studied in Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Escherichia coli and Candida albicans. Materials and Methods: The JVB was prepared and analyzed for the quality parameters mentioned in the Ayurvedic texts as well as the modern parameters like XRD, SEM and EDX to find out the nature of the Vanga Bhasma samples. The anti-microbial study was done to find out the anti-microbial efficacy of the JVB samples. Results and Conclusions: The adopted method for preparation of JVB was able to produce a Bhasma compatible to organoleptic parameters mentioned in the ancient texts. The obtained JVB was grayish white with the formation of the small sized particles as small as a nanoparticle which was confirmed by SEM study. XRD study confirms that Tin oxide is the major compound found in all the JVB samples. JVB showed antimicrobial activity in inhibiting the growth of Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Escherichia coli and Candida albicans with a concentration of 100mg/ml. The mean zone of inhibition was 12.33mm, 12.33mm, 14.66mm, 10.33mm and 16mm respectively. This outcome further supports the Krumighna and Jantughna properties (Anti-microbial activity) of Vanga Bhasma. Hence, JVB is said to possess Anti-Microbial activity.


Author(s):  
MARIANA NARVAEZ CORREA ◽  
OSCAR EDUARDO RODRÍGUEZ AGUIRRE ◽  
JANETH DEL CARMEN ARIAS PALACIOS

Objective: The assessment of the antimicrobial activity of Hymenaea courbaril L. on different microorganisms was realized with four bacteria, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, two yeasts Candida albicans and Saccharomyces cerevisiae, and finally two filamentous fungi Aspergillus niger. Methods: The method of plates and wells was used, using extracts from the fruit of the plant mentioned above. These extracts were made with different solvents such as hexane, dichloromethane, ethanol, and aqueous. Results: It was determined that the dichloromethane extract of H. courbaril L. has antimicrobial activity against the bacterium S. aureus showing a percentage of inhibition of 1.47%. Conclusions: In comparison to bacteria, fungi do not represent a significant inhibitory capacity which represents that when comparing these extracts of this plant, under the test conditions evaluated, it was presented that they obtained antimicrobial activity against S. aureus.


Sign in / Sign up

Export Citation Format

Share Document