Lemon grass extract alleviates oxidative stress and delayed the loss of climbing ability in transgenic Drosophila model of Parkinson’s disease

Author(s):  
Yasir Hasan Siddique ◽  
Falaq Naz ◽  
Mantasha I. ◽  
M. Shahid

Background: Parkinson’s Disease (PD) is characterized by the aggregation of α-synuclein, formation of Lewy bodies and the selective loss of dopaminergic neurons of mesencephalic substantia nigra pars compacta (SNC) with the debilitating motor symptoms. Introduction: The available treatment for PD provides symptomatic relief with no control on the progression of the disease. The treatment is also associated with several side effects. As the neurodegeneration in PD is also associated with the oxidative stress, antioxidants from plants could play an important role in reducing the PD symptoms. With this aim we decided to study the effect of Lemon grass extract (LGE) on the transgenic Drosophila model of PD expressing human alpha synuclein in the neurons. Methods: The PD flies allowed were allowed to feed on different doses of LGE established in diet for 24 days and then assayed for climbing ability and oxidative stress markers. The molecular docking study was also performed for citral (the component of the extract) and human α-synuclein. Results and discussion: A dose dependent significant improvement in the climbing ability and reduction in oxidative stress was observed in the PD flies exposed to LGE. In our earlier study on LGE, citral was found to be the main component of the extract by GC-MS analysis. The docking results also support the positive interaction between citral and human α-synuclein. Conclusion: The results suggests that LGE is potemnt in reducing the PD symptoms being mimicked in transgenic Drosophila.

2020 ◽  
Vol 17 (10) ◽  
pp. 1261-1269
Author(s):  
Yasir Hasan Siddique ◽  
Rahul ◽  
Mantasha Idrisi ◽  
Mohd. Shahid

Background: Parkinson’s disease is a common neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Introduction: The effects of alpha synuclein, parkin mutation and pharmacological agents have been studied in the Drosophila model. Methods: The effect of cabergoline was studied on the cognitive impairments exhibited by the transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline. Results and Discussion: The exposure of cabergoline not only showed a dose-dependent significant delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular docking studies showed the positive interaction between cabergoline and alpha-synuclein. Conclusion: The results suggest a protective effect of cabergoline against the cognitive impairments.


2020 ◽  
Vol 07 ◽  
Author(s):  
Yasir Hasan Siddique ◽  
Falaq Naz ◽  
Mohammad Rashid

Aim: The effect of Majun Falasfa (MF) was studied on the transgenic Drosophila expressing human alpha synuclein panneurally. Background: MF is a Unani medicine used for enhancing mental power and treating kidney, joint pains and urinary tract diseases. It is also use for phlegmatic diseases. It is also being used in age related dementia and to counter the effects of ageing. Methods: The equivalents of recommended dose for human were established for 20g of fly food i.e. 0.0014, 0.0028, 0.0042 and 0.0056g per 20g of diet. The PD flies were allowed to feed on it for 24 days before studying its effect on cognitive and oxidative stress parameters. Immunohistochemistry was also performed study the effect of MF on human alpha synuclein expression. Results: The exposure to MF increased the life span and improves the activity of PD flies. MF delayed the loss of climbing ability of PD flies. The exposure of PD flies to MF significantly reduced the oxidative stress and improves the antioxidant enzymes homeostasis compared to unexposed PD flies. The exposure to MF reduces the formation of Lewy bodies as is evident by immunohistochemistry. Conclusion: MF is potent in reducing the PD (Parkinson’s disease) symptoms being mimicked in the transgenic flies.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Sergio Montes ◽  
Susana Rivera-Mancia ◽  
Araceli Diaz-Ruiz ◽  
Luis Tristan-Lopez ◽  
Camilo Rios

Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found insubstantia nigraand caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased insubstantia nigra pars compactain Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yasir Hasan Siddique ◽  
Wasi Khan ◽  
Braj Raj Singh ◽  
Alim H. Naqvi

The genetic models in Drosophila provide a platform to understand the mechanism associated with degenerative diseases. The model for Parkinson's disease (PD) based on normal human alpha-synuclein (αS) expression was used in the present study. The aggregation of αS in brain leads to the formation of Lewy bodies and selective loss of dopaminergic neurons due to oxidative stress. Polyphenols generally have the reduced oral bioavailability, increased metabolic turnover, and lower permeability through the blood brain barrier. In the present study, the effect of synthesized alginate-curcumin nanocomposite was studied on the climbing ability of the PD model flies, lipid peroxidation, and apoptosis in the brain of PD model flies. The alginate-curcumin nanocomposite at final doses of 10−5, 10−3, and 10−1 g/mL was supplemented with diet, and the flies were allowed to feed for 24 days. A significant dose-dependent delay in the loss of climbing ability and reduction in the oxidative stress and apoptosis in the brain of PD model flies were observed. The results suggest that alginate-curcumin nanocomposite is potent in delaying the climbing disability of PD model flies and also reduced the oxidative stress as well as apoptosis in the brain of PD model flies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexandre Iarkov ◽  
Cristhian Mendoza ◽  
Valentina Echeverria

Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.


2016 ◽  
Vol 24 (7) ◽  
pp. 376-391 ◽  
Author(s):  
Emma Deas ◽  
Nunilo Cremades ◽  
Plamena R. Angelova ◽  
Marthe H.R. Ludtmann ◽  
Zhi Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document