Neurometabolic Diseases in Children: Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Features

Author(s):  
Direnç Özlem Aksoy ◽  
Alpay Alkan

Background: Neurometabolic diseases are a group of diseases secondary to disorders in different metabolic pathways, which lead to white and/or gray matter of the brain involvement. </P><P> Discussion: Neurometabolic disorders are divided in two groups as dysmyelinating and demyelinating diseases. Because of wide spectrum of these disorders, there are many different classifications of neurometabolic diseases. We used the classification according to brain involvement areas. In radiological evaluation, MRI provides useful information for these disseases. Conclusion: Magnetic Resonance Spectroscopy (MRS) provides additional metabolic information for diagnosis and follow ups in childhood with neurometabolic diseases.

2015 ◽  
Vol 26 (6) ◽  
pp. 609-632 ◽  
Author(s):  
Michael H. Buonocore ◽  
Richard J. Maddock

AbstractMagnetic resonance spectroscopy (MRS) provides unique information about the neurobiological substrates of brain function in health and disease. However, many of the physical principles underlying MRS are distinct from those underlying magnetic resonance imaging, and they may not be widely understood by neuroscientists new to this methodology. This review describes these physical principles and many of the technical methods in current use for MRS experiments. A better understanding these principles and methods may help investigators select pulse sequences and quantification methods best suited to the aims of their research program and avoid pitfalls that can hamper new investigators in this field.


2021 ◽  
Vol 15 (9) ◽  
pp. 4009-4011
Author(s):  
Saulat Sarfraz ◽  
Mahwish Farzana

Background: In spite of recent advances in the use of diagnostic imaging modalities none of them has a hundred percent accuracy. So, misdiagnosis still occurs. Many trials are being done to evaluate the accuracy of these tools individually or in combination. The most useful investigation is MRI which broadly gives information of lesion as well its relationship with surrounding structures. While magnetic resonance spectroscopy further characterizes the lesion into benign or malignant. So this study is bit superior giving more details. By enlarge histopathology is gold standard for ultimate diagnosis. However these radiological investigations are extremely important for preoperative planning as well management of the lesion. In this study we compare the diagnostic accuracy of Magnetic Resonance Spectroscopy (MRS) with conventional MRI (Magnetic Resonance Imaging) sequences for diagnosis of brain tumors keeping histopathology as gold standard. Methods: The study was performed in 150 clinically suspected cases which were referred to Radiology Department from OPD, Indoor, Emergency and private sources from outside the hospital. Results: Majority 85(56.7%) were adult males and 65(43.3%) were adult females. The study was divided into two major age groups. There were 33cases (22%) with average age 20-35 years. The other age group 36-50 years had 40(26.7%) Majority of the cases 77(51.3%) were of average >50 years of age. The higher age groups showed a female dominance. Histopathology of 100(66.7%) cases confirmed positive and 50(33.3%) negative for MR Spectroscopy. On comparison of conventional MRI with contrast, and Histopathology it was observed that the sensitivity of MRI was 74.0% and the specificity 82.0%.The positive and negative predictive values gave a lower accuracy rate of 76.6%. Conclusion: The conclusion of our study is that MRS is a rigorous, non-invasive, safe and convenient imaging modality for the evaluation of brain tumors as compared to MRI. Keywords: Brain tumors, MRI, MRS, Histopathology


Sign in / Sign up

Export Citation Format

Share Document