Computer-aided Diagnosis of Melanoma: A Review of Existing Knowledge and Strategies

Author(s):  
Ananjan Maiti ◽  
Biswajoy Chatterjee ◽  
Amira S. Ashour ◽  
Nilanjan Dey

Computer-aided diagnosis (CAD) systems are the best alternative for immediate disclosure and diagnosis of skin diseases. Such systems comprise several image processing procedures, including segmentation, feature extraction and artificial intelligence (AI) based methods. This survey highlights different CAD methodologies for diagnosing Melanoma and related skin diseases. It has also discussed types, stages, treatments and various imaging techniques of skin cancer. Currently, researchers developed new techniques to detect each stage. Extensive studies on melanoma cancer detection were performed by incorporating advanced machine learning. Still, there is a high need for an accurate, faster, affordable, portable methodology for a CAD system. This will strengthen the work in related fields and address the future direction of a similar kind of research.

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 973
Author(s):  
Valentina Giannini ◽  
Simone Mazzetti ◽  
Giovanni Cappello ◽  
Valeria Maria Doronzio ◽  
Lorenzo Vassallo ◽  
...  

Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation. Three resident radiologists were asked to review multiparametric-MRI of patients with and without PCa, both unassisted and assisted by a CAD system. In both reading sessions, residents recorded all positive cases, and sensitivity, specificity, negative and positive predictive values were computed and compared. The dataset comprised 90 patients (45 with at least one clinically significant biopsy-confirmed PCa). Sensitivity significantly increased in the CAD assisted mode for patients with at least one clinically significant lesion (GS > 6) (68.7% vs. 78.1%, p = 0.018). Overall specificity was not statistically different between unassisted and assisted sessions (94.8% vs. 89.6, p = 0.072). The use of the CAD system significantly increases the per-patient sensitivity of inexperienced readers in the detection of clinically significant PCa, without negatively affecting specificity, while significantly reducing overall reporting time.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


2019 ◽  
Vol 8 (4) ◽  
pp. 12261-12273

Background: Gastrointestinal (GI) tract abnormalities are most common across the world, and it is a significant threat to the health of human beings. Capsule endoscopy is a non-sedative, non-invasive and patient-friendly procedure for the diagnosis of GI tract abnormalities. However, it is very time consuming and tiresome task for physicians due to length of endoscopy videos. Thus computer-aided diagnosis (CAD) system is a must. Methods: This systematic review aims to investigate state-of-the-art CAD systems for automatic abnormality detection in capsule endoscopy by examining publications from scientific databases namely IEEE Xplore, Science Direct, Springer, and Scopus. Results: Based on defined search criteria and applied inclusion and exclusion criteria, 44 articles are included out of 187. This study presents the current status and analysis of CAD systems for capsule endoscopy. Conclusion: Publicly available larger dataset and a deep learning based CAD system may help to improve the efficiency of automated abnormality detection in capsule endoscopy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qingling Li ◽  
Yanhua Zhu ◽  
Minglin Chen ◽  
Ruomi Guo ◽  
Qingyong Hu ◽  
...  

Background: It is often difficult to diagnose pituitary microadenoma (PM) by MRI alone, due to its relatively small size, variable anatomical structure, complex clinical symptoms, and signs among individuals. We develop and validate a deep learning -based system to diagnose PM from MRI.Methods: A total of 11,935 infertility participants were initially recruited for this project. After applying the exclusion criteria, 1,520 participants (556 PM patients and 964 controls subjects) were included for further stratified into 3 non-overlapping cohorts. The data used for the training set were derived from a retrospective study, and in the validation dataset, prospective temporal and geographical validation set were adopted. A total of 780 participants were used for training, 195 participants for testing, and 545 participants were used to validate the diagnosis performance. The PM-computer-aided diagnosis (PM-CAD) system consists of two parts: pituitary region detection and PM diagnosis. The diagnosis performance of the PM-CAD system was measured using the receiver operating characteristics (ROC) curve and area under the ROC curve (AUC), calibration curve, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-score.Results: Pituitary microadenoma-computer-aided diagnosis system showed 94.36% diagnostic accuracy and 98.13% AUC score in the testing dataset. We confirm the robustness and generalization of our PM-CAD system, the diagnostic accuracy in the internal dataset was 96.50% and in the external dataset was 92.26 and 92.36%, the AUC was 95.5, 94.7, and 93.7%, respectively. In human-computer competition, the diagnosis performance of our PM-CAD system was comparable to radiologists with >10 years of professional expertise (diagnosis accuracy of 94.0% vs. 95.0%, AUC of 95.6% vs. 95.0%). For the misdiagnosis cases from radiologists, our system showed a 100% accurate diagnosis. A browser-based software was designed to assist the PM diagnosis.Conclusions: This is the first report showing that the PM-CAD system is a viable tool for detecting PM. Our results suggest that the PM-CAD system is applicable to radiology departments, especially in primary health care institutions.


2021 ◽  
Author(s):  
Omid Talakoub

One of the most important areas of biomedical engineering is medical imaging. Fully automated schemes are currently being explored as Computer-Aided Diagnosis (CAD) systems to provide a second opinion to medical professionals; of these systems, abnormal region detector in medical images is one of the most critical CAD systems in development. The primary motivation in using these systems is due to the fact that reading an enormous number of images is a time-consuming task for the radiologist. This task can be sped up by using a CAD system which highlights abnormal regions of interest. Low false positive rates and high sensitivity are essential requirement[s] of such a system. The initial requirement of processing any organ is an accurate segmentation of the target of interest in the images. A segmentation method based on the wavelet transformation is proposed which accurately extracts lung regions in the thoracic CT images. After this step, an Aritifical Intelligence system, known as Least Squares Support Vector Machine (LS-SVM), is employed to classify nodules within the regions of interest. It is a well known fact that the lung nodules, except the pleural nodules, are mostly spherical structures whereas other structures including blood vessels are shaped as other structures such as tubular. Therfore, an enhancment filter is developed in which spherical structures are accentuated. Processing three different real databases revealed that the proposed system has reached the objective of a CAD system to provide reliable opinion for the doctors in the diagnosis fashion.


2019 ◽  
Vol 13 ◽  
Author(s):  
Muhammad Aqeel Ashraf ◽  
Shahreen Kasim

: In this paper, medical images are used to realize the computer-aided diagnosis (CAD) system which develops targeted solutions to existing problems. Relying on the Mi COM platform, this system has collected and collated cases of all kinds, based on which a unified data model is constructed according to the gold standard derived by deducting each instance. Afterwards, the object segmentation algorithm is employed to segment the diseased tissues. Edge modification and feature extraction are performed for the tissue block segmented. The features extracted are classified by applying support vector machines or the Naive Bayesian classification algorithm. From the simulation results, the CAD system developed in this paper allows realization of diagnosis and treatment and sharing of data resources.


2019 ◽  
Vol 9 (4) ◽  
pp. 186-193
Author(s):  
Lei Xu ◽  
Junling Gao ◽  
Quan Wang ◽  
Jichao Yin ◽  
Pengfei Yu ◽  
...  

Background: Computer-aided diagnosis (CAD) systems are being applied to the ultrasonographic diagnosis of malignant thyroid nodules, but it remains controversial whether the systems add any accuracy for radiologists. Objective: To determine the accuracy of CAD systems in diagnosing malignant thyroid nodules. Methods: PubMed, EMBASE, and the Cochrane Library were searched for studies on the diagnostic performance of CAD systems. The diagnostic performance was assessed by pooled sensitivity and specificity, and their accuracy was compared with that of radiologists. The present systematic review was registered in PROSPERO (CRD42019134460). Results: Nineteen studies with 4,781 thyroid nodules were included. Both the classic machine learning- and the deep learning-based CAD system had good performance in diagnosing malignant thyroid nodules (classic machine learning: sensitivity 0.86 [95% CI 0.79–0.92], specificity 0.85 [95% CI 0.77–0.91], diagnostic odds ratio (DOR) 37.41 [95% CI 24.91–56.20]; deep learning: sensitivity 0.89 [95% CI 0.81–0.93], specificity 0.84 [95% CI 0.75–0.90], DOR 40.87 [95% CI 18.13–92.13]). The diagnostic performance of the deep learning-based CAD system was comparable to that of the radiologists (sensitivity 0.87 [95% CI 0.78–0.93] vs. 0.87 [95% CI 0.85–0.89], specificity 0.85 [95% CI 0.76–0.91] vs. 0.87 [95% CI 0.81–0.91], DOR 40.12 [95% CI 15.58–103.33] vs. DOR 44.88 [95% CI 30.71–65.57]). Conclusions: The CAD systems demonstrated good performance in diagnosing malignant thyroid nodules. However, experienced radiologists may still have an advantage over CAD systems during real-time diagnosis.


2016 ◽  
Vol 85 (10) ◽  
pp. 1728-1734 ◽  
Author(s):  
Joseph Benzakoun ◽  
Sébastien Bommart ◽  
Joël Coste ◽  
Guillaume Chassagnon ◽  
Mathieu Lederlin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document