3D Structure Generation, Molecular Dynamics and Docking Studies of IRHOM2 Protein Involved in Cancer & Rheumatoid Arthritis

2016 ◽  
Vol 11 (4) ◽  
pp. 325-335 ◽  
Author(s):  
Utkarsh Raj ◽  
Himansu Kumar ◽  
Pritish Varadwaj
Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5007
Author(s):  
Safaa M. Kishk ◽  
Rania M. Kishk ◽  
Asmaa S. A. Yassen ◽  
Mohamed S. Nafie ◽  
Nader A. Nemr ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), which caused novel corona virus disease-2019 (COVID-19) pandemic, necessitated a global demand for studies related to genes and enzymes of SARS-CoV2. SARS-CoV2 infection depends on the host cell Angiotensin-Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease-2 (TMPRSS2), where the virus uses ACE2 for entry and TMPRSS2 for S protein priming. The TMPRSS2 gene encodes a Transmembrane Protease Serine-2 protein (TMPS2) that belongs to the serine protease family. There is no crystal structure available for TMPS2, therefore, a homology model was required to establish a putative 3D structure for the enzyme. A homology model was constructed using SWISS-MODEL and evaluations were performed through Ramachandran plots, Verify 3D and Protein Statistical Analysis (ProSA). Molecular dynamics simulations were employed to investigate the stability of the constructed model. Docking of TMPS2 inhibitors, camostat, nafamostat, gabexate, and sivelestat, using Molecular Operating Environment (MOE) software, into the constructed model was performed and the protein-ligand complexes were subjected to MD simulations and computational binding affinity calculations. These in silico studies determined the tertiary structure of TMPS2 amino acid sequence and predicted how ligands bind to the model, which is important for drug development for the prevention and treatment of COVID-19.


Author(s):  
Maryam Iman ◽  
Hamid Bakhtiari Kaboutaraki ◽  
Rahim Jafari ◽  
Seyed Ayoub Hosseini ◽  
Abolghasem Moghimi ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1400
Author(s):  
Ciresthel Bello-Rios ◽  
Sarita Montaño ◽  
Olga Lilia Garibay-Cerdenares ◽  
Lilian Esmeralda Araujo-Arcos ◽  
Marco Antonio Leyva-Vázquez ◽  
...  

The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.


2021 ◽  
Vol 22 (7) ◽  
pp. 3595
Author(s):  
Md Afjalus Afjalus Siraj ◽  
Md. Sajjadur Rahman ◽  
Ghee T. Tan ◽  
Veronique Seidel

A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, β-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood–brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.


Sign in / Sign up

Export Citation Format

Share Document