Recent Advances in Biosensors Based Nanostructure for Pharmaceutical Analysis

2019 ◽  
Vol 15 (2) ◽  
pp. 152-158 ◽  
Author(s):  
Eslam Pourbasheer ◽  
Zhila Azari ◽  
Mohammad Reza Ganjali

Background: The development of novel nanostructures for pharmaceutical analysis has received great attention. Biosensors are a class of analytical techniques competent in the rapid quantification of drugs. Recently, the nanostructures have been applied for modification of biosensors. Objective: The goal of the present study is to review novel nanostructures for pharmaceutical analysis by biosensors. Method: In this review, the application of different biosensors was extensively discussed. Results: Biosensors based nanostructures are a powerful alternative to conventional analytical techniques, enabling highly sensitive, real-time, and high-frequency monitoring of drugs without extensive sample preparation. Several examples of their application have been reported. Conclusion: The present paper reviews the recent advances on the pharmaceutical analysis of biosensor based nanostructures.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 413 ◽  
Author(s):  
Jan F. Joseph ◽  
Leonie Gronbach ◽  
Jill García-Miller ◽  
Leticia M. Cruz ◽  
Bernhard Wuest ◽  
...  

Cancer treatment often lacks individual dose adaptation, contributing to insufficient efficacy and severe side effects. Thus, personalized approaches are highly desired. Although various analytical techniques are established to determine drug levels in preclinical models, they are limited in the automated real-time acquisition of pharmacokinetic profiles. Therefore, an online UHPLC-MS/MS system for quantitation of drug concentrations within 3D tumor oral mucosa models was generated. The integration of sampling ports into the 3D tumor models and their culture inside the autosampler allowed for real-time pharmacokinetic profiling without additional sample preparation. Docetaxel quantitation was validated according to EMA guidelines. The tumor models recapitulated the morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel treatment. The administration of four different docetaxel concentrations resulted in comparable courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in 3D tumor models without any sample preparation. The inclusion of patient-derived tumor cells into our models may further optimize the pharmacotherapy of cancer patients by efficiently delivering personalized data of the target tissue.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mustafa Çelebier ◽  
Merve Nenni

Background: Metabolomics has gained importance in clinical applications over the last decade. Metabolomics studies are significant because the systemic metabolome is directly affected by disease conditions. Metabolome-based biomarkers are actively being developed for early diagnosis and to indicate the stage of specific diseases. Additionally, understanding the effect of an intervention on a living organism at the molecular level is a crucial strategy for understanding novel or unexpected biological processes. Results: The simultaneous improvements in advanced analytical techniques, sample preparation techniques, computer technology, and databank contents has enabled more valuable scientific information to be gained from metabolomics than ever before. With over 15,000 known endogenous metabolites, there is no single analytical technique capable of analyzing the whole metabolome. However, capillary electrophoresis-mass spectrometry (CE-MS) is a unique technique used to analyze an important portion of metabolites not accessible by liquid chromatography or gas chromatography techniques. The analytical capability of CE, combined with recent sample preparation techniques focused on extracting polar-ionic compounds, make CE-MS a perfect technique for metabolomic studies. Conclusion: Here, previous reviews of CE-MS based metabolomics are evaluated to highlight recent improvements in this technique. Specifically, we review papers from the last two years (2018 and 2019) on CE-MS based metabolomics. The current situation and the challenges facing metabolomic studies are discussed to reveal the high potential of CE-MS for further studies, especially in biomarker development studies.


Author(s):  
Jatin K Pradhan ◽  
Arun Ghosh

It is well known that linear time-invariant controllers fail to provide desired robustness margins (e.g. gain margin, phase margin) for plants with non-minimum phase zeros. Attempts have been made in literature to alleviate this problem using high-frequency periodic controllers. But because of high frequency in nature, real-time implementation of these controllers is very challenging. In fact, no practical applications of such controllers for multivariable plants have been reported in literature till date. This article considers a laboratory-based, two-input–two-output, quadruple-tank process with a non-minimum phase zero for real-time implementation of the above periodic controller. To design the controller, first, a minimal pre-compensator is used to decouple the plant in open loop. Then the resulting single-input–single-output units are compensated using periodic controllers. It is shown through simulations and real-time experiments that owing to arbitrary loop-zero placement capability of periodic controllers, the above decoupled periodic control scheme provides much improved robustness against multi-channel output gain variations as compared to its linear time-invariant counterpart. It is also shown that in spite of this improved robustness, the nominal performances such as tracking and disturbance attenuation remain almost the same. A comparison with [Formula: see text]-linear time-invariant controllers is also carried out to show superiority of the proposed scheme.


Author(s):  
Xiaojia Jiang ◽  
Mingsong Zang ◽  
Fei Li ◽  
Chunxi Hou ◽  
Quan Luo ◽  
...  

Biological nanopore-based techniques have attracted more and more attention recently in the field of single-molecule detection, because they allow the real-time, sensitive, high-throughput analysis. Herein, we report an engineered biological...


2021 ◽  
pp. 104063872110214
Author(s):  
Deepanker Tewari ◽  
David Steward ◽  
Melinda Fasnacht ◽  
Julia Livengood

Chronic wasting disease (CWD) is a prion-mediated, transmissible disease of cervids, including deer ( Odocoileus spp.), which is characterized by spongiform encephalopathy and death of the prion-infected animals. Official surveillance in the United States using immunohistochemistry (IHC) and ELISA entails the laborious collection of lymphoid and/or brainstem tissue after death. New, highly sensitive prion detection methods, such as real-time quaking-induced conversion (RT-QuIC), have shown promise in detecting abnormal prions from both antemortem and postmortem specimens. We compared RT-QuIC with ELISA and IHC for CWD detection utilizing deer retropharyngeal lymph node (RLN) tissues in a diagnostic laboratory setting. The RLNs were collected postmortem from hunter-harvested animals. RT-QuIC showed 100% sensitivity and specificity for 50 deer RLN (35 positive by both IHC and ELISA, 15 negative) included in our study. All deer were also genotyped for PRNP polymorphism. Most deer were homozygous at codons 95, 96, 116, and 226 (QQ/GG/AA/QQ genotype, with frequency 0.86), which are the codons implicated in disease susceptibility. Heterozygosity was noticed in Pennsylvania deer, albeit at a very low frequency, for codons 95GS (0.06) and 96QH (0.08), but deer with these genotypes were still found to be CWD prion-infected.


Sign in / Sign up

Export Citation Format

Share Document