Revealing changes in curcumin bioavailability using vitamin C as an enhancer by HPLC-MS/MS

2019 ◽  
Vol 16 ◽  
Author(s):  
Xufen Dai ◽  
Jiaxue Hao ◽  
Ying Feng ◽  
Jing Wang ◽  
Qiannan Li ◽  
...  

Background: Curcumin (CUR), a natural isolated compound from turmeric, has been the promising star in fighting many diseases but the broad application of curcumin has been limited ascribed to low bioavailability. Objective: The aim of this study is to pursue the enhancement of curcumin bioavailability through co-administration of vitamin C. Methods: Such purpose was achieved through the analysis of curcumin pharmacokinetics by high performance liquid chromatography coupled with electrospray ionization - tandem mass spectrometry (HPLC - ESI - MS/MS). The plasma was separated on a C18 reverse phase column using acetonitrile and ammonium formate solution (pH 6.5; 2.0 mM) at 0.8 mL/min. MS/MS detection was carried out in negative mode using mass patterns of m/z 367.0 > 216.7 for curcumin and m/z 265.2 > 223.9 for internal standard (honokiol). Results: Successful application of the proposed method in the pharmacokinetic study presented clear changes in key pharmacokinetic parameters including the growth of AUC (0-t) up to 2.4 times, 2.2-fold increase of Cmax, 2.2-fold loss of CL, and 1.5-fold diminishment of t1/2. Conclusion: We developed an HPLC-ESI-MS/MS method for determination of curcumin in rat plasma and validated the improvement of bioavailability of curcumin through co-administration of vitamin C. We reasoned these changes to the inhibition of lipid peroxidation induced by the use of vitamin C. Such a simple strategy is possible to become an alternative for enhancing curcumin efficiency in practice.

Drug Research ◽  
2017 ◽  
Vol 67 (09) ◽  
pp. 534-538
Author(s):  
Tae Kim

AbstractIn this study, a sensitive and reliable method for the quantitation of fenofibric acid in rat plasma was developed and validated using high performance liquid chromatography (HPLC). The plasma samples were prepared by deproteinization, and sildenafil was used as an internal standard. Chromatographic separation was achieved using a reversed-phase (C18) column. The mobile phase, 0.02 M ammonium acetate buffer:acetonitrile (35:65, v/v), was run at a flow rate of 1.0 mL/min, and the column eluent was monitored using an ultraviolet detector at 280 nm at room temperature. The retention times of sildenafil (an internal standard), and fenofibric acid were approximately 5.9 and 7.7 min, respectively. The quantitation limit of fenofibric acid in rat plasma was 0.03 μg/mL. Pharmacokinetic parameters of fenofibric acid was evaluated after oral (at doses of 20 mg/kg) administration of JW322 and fenofibrate in rats. After oral administration (20 mg/kg) of JW322, relative bioavailability was approximately 272.8% compared to fenofibrate.


2020 ◽  
Vol 19 (3) ◽  
pp. 651-659
Author(s):  
Xin Jia ◽  
Yinfei Du ◽  
Jia Xu ◽  
Yu Dong

Purpose: To develop a simple, rapid and sensitive ultra-performance liquid chromatography - electrospray ionization-mass spectrometry (UPLC–ESI–MS/MS) method was developed and fully validated for the simultaneous determination of galangin, kaempferide, galangin-3-methylether, kaempferol and quercetin in rat plasma after oral administration of Mongolian Medicine, Shudage-4 extracts. Methods: The galangin, kaempferide, galangin-3-methylether, kaempferol and quercetin were separated on a C18 column using 0.1 % formic acid at a flow rate of 0.4 mL / min and detected by a mass spectrometer in negative-ion mode with selected reaction monitoring (SRM) mode. Plasma samples were processed with a simple deproteinization technique using ethyl acetate and acetonitrile. Following the protein precipitation, the plasma samples were evaporated under gentle stream of nitrogen and analyzed by above method. Naringin was used as an internal standard (IS). Method validation was performed according to the Chinese Food and Drug Administration guidelines. Results: A good linearity (r2 ≥ 0.9990) was showed by the UPLC – ESI – MS / MS method, the low limits of quantification for galangin, kaempferide, galangin-3-methylether, kaempferol and quercetin were 229.8, 78.8, 32.0, 123.7 and 137.8 ng / mL, respectively. The results of inter-day and intra-day precisions met the experimental requirement (< 7.8 %). The matrix effect and recovery efficiency of the five analytes were more than 72.9 and 88.7 % respectively. The stability of the analytes were satisfactory. The UPLC – ESI – MS / MS method has been used for the five analytes’ pharmacokinetics study successfully after gastrointestinal route of the Mongolian Medicine Shudage-4. The pharmacokinetic parameters showed significant differences (P < 0.05) between the normal and gastric ulcer groups. The metabolism and transport of the five analytes in gastric ulcer rates were faster than in normal rats after administration of Shudage - 4 extract. Double-peak phenomenon appeared in galangin, galangin – 3 - methylether and quercetin. Conclusion: The results suggest that the metabolism and transport of Mongolian Medicine Shudage-4 in gastric ulcer rats is faster than in normal rats and may be enriched and acted on at the lesion site. Keywords: UPLC – ESI – MS / MS; Mongolian medicine; Shudage - 4; pharmacokinetics; gastric ulcer


Drug Research ◽  
2019 ◽  
Vol 69 (11) ◽  
pp. 606-611
Author(s):  
Tae Kon Kim

AbstractA sensitive method for quantitation of JW5473 in rat plasma has been established using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI/MS/MS). Tramadol was used as an internal standard. JW5473 and internal standard in plasma sample was extracted using acetonitrile (protein precipitation). A centrifuged upper layer was then evaporated and reconstituted with the mobile phase of 0.5% formic acid-acetonitrile (40:60, v/v). The reconstituted samples were injected into a C18 reversed-phase column. Using MS/MS in the multiple reaction monitoring (MRM) mode, JW5473 and tramadol were detected without severe interference from rat plasma matrix. JW5473 produced a protonated precursor ion ([M+H]+) at m/z 432.3 and a corresponding product ion at m/z 114.4. And the internal standard produced a protonated precursor ion ([M+H]+) at m/z 264.4 and a corresponding product ion at m/z 58.1. Detection of JW5473 in human plasma by the UPLC-ESI/MS/MS method was accurate and precise with a quantitation limit of 1.0 ng/mL. The validation, reproducibility, stability, and recovery of the method were evaluated. The method has been successfully applied to pharmacokinetic studies of JW5473 in rat plasma. Pharmacokinetic parameters of JW5473 was evaluated after intravenous (i. v.; at doses of 15 mg/kg) and oral (p.o.; at doses of 30 mg/kg) administration of JW5473 in rats. After p.o. administration (30 mg/kg) of JW5473, F (Fraction absorbed) value was approximately 70.5%.


Drug Research ◽  
2021 ◽  
Author(s):  
Tae Kon Kim

AbstractWe developed unique small-molecule inhibitors of hepatitis C virus (HCV), which had potent activity for HCV entry inhibition and multi-genotypic antiviral activity. In this study, a sensitive and reliable method for the quantitation of JW5624 in rat plasma was developed and validated using high performance liquid chromatography. Chromatographic separation was achieved using a reversed-phase (C18) column. The mobile phase, 0.02 M ammonium acetate buffer:acetonitrile (30:70, v/v), was run at a flow rate of 1.0 mL/min, and the column eluent was monitored using an ultraviolet detector at 254 nm at room temperature. The retention times of sildenafil (an internal standard), and JW5624 were approximately 5.9 and 7.3 min, respectively. The detection limit of JW5624 in rat plasma was 0.03 μg/mL. Pharmacokinetic parameters of JW5624 was evaluated after intravenous (i. v.; at doses of 5 mg/kg) and oral (p.o.; at doses of 10 mg/kg) administration of JW5624 in rats. After p.o. administration (10 mg/kg) of JW5624, F value was approximately 71.0%. These results suggest that JW5624 can be a potential candidate drug for the development of HCV entry inhibitors.


2020 ◽  
Vol 58 (4) ◽  
pp. 334-345
Author(s):  
Nayra M Kamel ◽  
Magda W Samaha ◽  
Ahmed O Elzoghby ◽  
Eman I El-Kimary

Abstract Two high-performance liquid chromatography-diode array detection methods have been developed and validated for the simultaneous quantification of genistein (GNS) and all trans retinoic acid (ATRA) as a novel anticancer combination therapy in their co-formulated nanoparticles and in rat plasma. Separation was performed on C18 column (250 × 4.6 mm, 5 μm) using celecoxib as internal standard. A mobile phase containing acetonitrile and water adjusted to pH 3 using 1% trifluoroacetic acid was delivered in gradient elution modes with time programmed UV detection. For extraction of the drugs and the internal standard from rat plasma, liquid- liquid extraction was applied. The proposed methods were validated as per International Conference on Harmonisation (ICH) guidelines (in the range 0.1–10 μg/mL for analysis of GNS and ATRA in nanoparticles) or according to Food and Drug Administration (FDA) guidance on bioanalytical method validation (in the range 0.025–20 μg/mL for analysis of GNS and ATRA in rat plasma). Pharmacokinetic study in six rats was performed following intravenous (IV) administration of a single dose of 0.5 mg/Kg of GNS and ATRA. The drugs’ concentrations were measured up to 24 hours, and different pharmacokinetic parameters were calculated. The obtained parameters were comparable with the reported values for IV administration of each drug alone in rats. This confirms the applicability of the proposed method in monitoring the levels of the two drugs in vivo following their coadministration and indicating that the two drugs could be coadministered as a promising novel combination therapy for the treatment of lung cancer without great alteration in their pharmacokinetic parameters compared with their individual IV administration.


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052096782
Author(s):  
Moli Wang ◽  
Yanxia Gao ◽  
Xueli Liu ◽  
Jing Zhang ◽  
Qiang Wang ◽  
...  

Objective To establish a specific and rapid ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC-ESI-MS/MS) method for measuring ticarcillin and clavulanate levels in rat plasma. Methods A Waters ACQUITY BEH C18 column (50 mm × 2.1 mm, 1.7 μm) and SCIEX QTRAP® LC-MS/MS System were used. Analyses were conducted to optimize the chromatographic and MS conditions, and the pharmacokinetic parameters of ticarcillin and clavulanate were assessed. Results Linear relationships were observed in the ranges of 10 to 10,000 ng/mL for ticarcillin R (r2 = 0.9967) 30 to 10,000 ng/mL for ticarcillin S (r2 = 0.9961), and 30 to 10,000 ng/mL for clavulanate (r2 = 0.9981). The average extraction recoveries of all compounds ranged from 86.9% to 96.4%. The pharmacokinetic parameters of the ticarcillin R and S isomers in rats were distinctive. The ticarcillin R and S isomers and clavulanate were rapidly absorbed in vivo. Ticarcillin S and clavulanate had similar elimination rates, whereas that of ticarcillin R was slower. Conclusion A UPLC-ESI-MS/MS method was developed and validated for the determination of ticarcillin and clavulanate in rat plasma.


Author(s):  
Maria Rincon Nigro ◽  
Jing Ma ◽  
Ololade Tosin Awosemo ◽  
Huan Xie ◽  
Omonike Arike Olaleye ◽  
...  

OJT007 is a methionine aminopeptidase 1 (MetAP1) inhibitor with potent anti-proliferative effects against Leishmania Major. In order to study its pharmacokinetics as a part of the drug development process, a sensitive, specific, and reproducible ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated. Voriconazole was used as the internal standard to generate standard curves ranging from 5 to 1000 ng/mL. The separation was achieved using a UPLC system equipped with an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) with 0.1% formic acid in acetonitrile and 0.1% formic acid in water as the mobile phase under gradient elution at a flow rate of 0.4 mL/min. The mass analysis was performed with a 4000 QTRAP® mass spectrometer using multiple-ion reaction monitoring (MRM) in the positive mode, with the transition of m/z 325 → m/z 205 for OJT007 and m/z 350 → m/z 101 for voriconazole. The intra- and inter-day precision and accuracy were within ±15%. The mean extraction recovery and the matrix effect were 95.1% and 7.96%, respectively, suggesting no significant matrix interfering with the quantification of the drug in rat plasma. This study was successfully used for the pharmacokinetic evaluation of OJT007 using the rat as an animal model.


Author(s):  
Yan Xiong ◽  
Yong-Hong Liu ◽  
Jian-Sha Li ◽  
Yu-Ying Zhang ◽  
Jing Zhang ◽  
...  

Abstract A simple high performance liquid chromatography (HPLC) method was developed and validated for the determination of coumarin-3-carboxylic acid analogues (C3AA) in rat plasma and a preliminary study on pharmacokinetics. Ferulic acid (FA) was used as the internal standard substance, and coumarin-3-carboxylic acid (C3A) was used as a substitute for quantitative C3AA. After protein precipitation with methanol, the satisfactory separation was achieved on an ODS2 column when the temperature was maintained at 30 ± 2°C. The correlation coefficient r in the C3A linear equation is equal to 0.9990. Pharmacokinetic parameters for t1/2, Tmax, Cmax, area under the curve (AUC)0-t, average residence time (MRT), apparent volume of distribution (V z/F) and clearance (Cl/F) were 1.89 ± 0.03 h, 0.39 ± 0.14 h, 1.81 ± 0.10 g· mL−1 ·h, 7.88 ± 0.24 g·mL−1·h, 3.23 ± 0.14 h, 0.43 ± 0.03 (mg·kg−1)·(g·mL−1)−1·h−1, respectively. The high performance liquid chromatography-photo diode array detector (HPLC-PDA) method established in this study can be used to separate and determine the content of C3AA in plasma of rats after 60% ethanol extraction by gavage. The plasma concentration-time curve and pharmacokinetic parameters reflect the absorption of C3AA in rat blood after oral administration to some extent.


Bioanalysis ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Libin Wang ◽  
Shouchang Gai ◽  
Xiaorui Zhang ◽  
Xiaohui Xu ◽  
Nan Gou ◽  
...  

Aim: A sensitive and reliable LC–MS/MS method has been established and validated to the quantitation of rivaroxaban (RIV) and TAK-438 in rat plasma using carbamazepine as internal standard. Results: The procedure of method validation was conducted according to the guidelines of EMA and US FDA. At the same time, the method was applied to pharmacokinetic interactions study between RIV and TAK-438 for the first time. When RIV and TAK-438 co-administration to rats, main pharmacokinetic parameters of TAK-438 like AUC(0-t), AUC(0-∞) and Cmax had statistically significant increase. The main pharmacokinetic parameters of RIV have no statistically significant difference (p > 0.05) when co-administered except for t1/2 (p < 0.01). Conclusion: The results indicated that drug–drug interactions occurred between RIV and TAK-438 when co-administered to rats.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Thana N Theofanis ◽  
Ankit Rochani ◽  
Richard F Schmidt ◽  
Michael J Lang ◽  
Geoffrey Stricsek ◽  
...  

Abstract INTRODUCTION Sphenopalatine ganglion (SPG) stimulation has been shown to reversibly alter blood–brain barrier (BBB) permeability. At the present time, it is widely used for the treatment of cluster headaches in Europe and is well tolerated for this use in humans. METHODS In a rat model, we assessed the permeability of intra-arterial temozolomide with and without sphenopalatine ganglion stimulation. We developed a high-performance liquid chromatography and mass spectrometry method to measure temozolomide in rat plasma and brain tissue, with caffeine as the internal standard. RESULTS Here we show a statistically significant (P = .0006), 5-fold upregulation of TMZ crossing the BBB and reaching brain parenchyma in rats receiving low-frequency (LF, 10 Hz) SPG stimulation. CONCLUSION Glioblastoma multiforme (GBM) remains an extremely difficult disease to treat. Since 2004, the gold standard of treatment for GBM in the United States includes surgery + TMZ and radiation. Our treatment paradigm shows a mechanism in which we could more effectively and safely deliver TMZ in a targeted manner, to minimize systemic toxicity and maximize action at the target tissue. The SPG Stimulation treatment paradigm could be used in a broad spectrum of central nervous system (CNS) pathologies.


Sign in / Sign up

Export Citation Format

Share Document