A review on performance evaluation of Bi2Te3–based and some other thermoelectric nanostructure materials

2020 ◽  
Vol 16 ◽  
Author(s):  
Mohammad Ruhul Amin Bhuiyan ◽  
Hayati Mamur ◽  
Ömer Faruk Dilmaç

Background: Future sustainable energy industrialization is a green energy source that has a lower circumstantial impact than traditional energy technologies. The advancement of new energy generation is important to expand the share of renewable energy sources. Objective: Worldwide, for the next generation, future energy demand may be fulfilled by using one of the renewable energy sources such as thermo electricity. Methods: The bismuth telluride-based (Bi2Te3-based) nanostructure material in thermo electricity stillhas a major part of applications. It is known as the most prospective TE device manufactured from a research arena towards successful commercialization. Results: The Bi2Te3-based nanostructure material is now on commercialization stages that it has some limitations. In order to find out the future direction of research and development of this material, the material will face a challenging way. Conclusion: The review paper provides an effective approach to overcome the limitation of Bi2Te3-based nanostructure. Moreover, in this review paper, the performance evaluation with existing Bi2Te3-based nanostructure and some other TE materials will be discussed in detail.

Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 43 ◽  
Author(s):  
Patrick Moriarty ◽  
Damon Honnery

Because of the near-term risk of extreme weather events and other adverse consequences from climate change, and, at least in the longer term, global fossil fuel depletion, there is world-wide interest in shifting to noncarbon energy sources, especially renewable energy (RE). Because of possible limitations on conventional renewable energy sources, researchers have looked for ways of overcoming these shortcomings by introducing radically new energy technologies. The largest RE source today is bioenergy, while solar energy and wind energy are regarded as having the largest technical potential. This paper reviews the literature on proposed new technologies for each of these three RE sources: microalgae for bioenergy, photolysis and airborne wind turbines. The main finding is that their proponents have underestimated the difficulties facing their introduction on a very large scale.


2021 ◽  
Vol 296 ◽  
pp. 01007
Author(s):  
Elena Andreeva ◽  
Alla Golovina ◽  
Victoria Zakharova

The changes in the sphere of the main energy sources in the world and in individual countries were highlighted; the prospects for Russian energy carriers in the global hydrocarbon market were identified. The demand for an energy carrier whose use in Germany is planned to be discontinued (coal) and the demand and competition for natural gas - Russian energy carrier that remains competitive in the conditions of “green” energy were analyzed. The Russian opportunity to save the energy supply market on the background of the new energy order are considered.


2013 ◽  
pp. 1357-1379
Author(s):  
Fatima Zohra Zerhouni ◽  
M’hammed Houari Zerhouni ◽  
Mansour Zegrar ◽  
Amine Boudghene Stambouli

The computer is the greatest innovation of the 20th century. It has changed our lives. It executes tasks with precision. There is no limit with what we can do with software. Computers are seductive. Companies and students cannot work without them. They help students to perform mathematical computations. It is very important that mathematical ideas are expressed in computer programs in order to have theoretical results and to verify them practically. Nowadays, the development of new and non-polluting energy producing and energy-storage systems is a great challenge for scientists. An alternative to the nuclear and fossil fuel power is renewable energy technologies. Due to ever-increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation systems have attracted increased interest. There is an accelerating world demand for environmentally friendly power. Among the renewable energy sources, the Photovoltaic (PV) energy is the most promising candidate for research and development for large scale users. Fuel cells have been receiving a lot of attention lately due to their potential of becoming a new energy source with a large range of applications. Fuel cells can be incorporated with other components to create high efficiency industrial power plants. Fuel cells permit clean and efficient energy production. The purpose of the work is to optimize the system’s operation. The main reason to build described system is to supply stand-alone systems using renewable energy sources. Therefore, the power plant has to produce energy independent of any weather fluctuations. Integrating photovoltaic energy sources with fuel cells, as a storage device replacing the conventional lead-acid batteries, leads to a non-polluting reliable energy source. In this chapter, an energy system comprising different energy sources, namely PV and fuel cells, is proposed. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. With the produced hydrogen from the electrolysis process, it is possible to generate electricity through fuel cells. Photovoltaic panels in particular can provide a good source of producing green electricity. It is autonomous, its operation does not pollute the atmosphere, and it is an inexhaustible and renewable source with great reliability. The simulation program developed also allows the exportation of different configurations. The experimental system described has permitted the validation of the proposed method.


Author(s):  
Fatima Zohra Zerhouni ◽  
M’hammed Houari Zerhouni ◽  
Mansour Zegrar ◽  
Amine Boudghene Stambouli

The computer is the greatest innovation of the 20th century. It has changed our lives. It executes tasks with precision. There is no limit with what we can do with software. Computers are seductive. Companies and students cannot work without them. They help students to perform mathematical computations. It is very important that mathematical ideas are expressed in computer programs in order to have theoretical results and to verify them practically. Nowadays, the development of new and non-polluting energy producing and energy-storage systems is a great challenge for scientists. An alternative to the nuclear and fossil fuel power is renewable energy technologies. Due to ever-increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation systems have attracted increased interest. There is an accelerating world demand for environmentally friendly power. Among the renewable energy sources, the Photovoltaic (PV) energy is the most promising candidate for research and development for large scale users. Fuel cells have been receiving a lot of attention lately due to their potential of becoming a new energy source with a large range of applications. Fuel cells can be incorporated with other components to create high efficiency industrial power plants. Fuel cells permit clean and efficient energy production. The purpose of the work is to optimize the system’s operation. The main reason to build described system is to supply stand-alone systems using renewable energy sources. Therefore, the power plant has to produce energy independent of any weather fluctuations. Integrating photovoltaic energy sources with fuel cells, as a storage device replacing the conventional lead-acid batteries, leads to a non-polluting reliable energy source. In this chapter, an energy system comprising different energy sources, namely PV and fuel cells, is proposed. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. With the produced hydrogen from the electrolysis process, it is possible to generate electricity through fuel cells. Photovoltaic panels in particular can provide a good source of producing green electricity. It is autonomous, its operation does not pollute the atmosphere, and it is an inexhaustible and renewable source with great reliability. The simulation program developed also allows the exportation of different configurations. The experimental system described has permitted the validation of the proposed method.


Green ◽  
2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Abdeen Mustafa Omer

AbstractSudan is an agricultural country with fertile soil and ample water resources, as well as livestock and forestry resources, and agricultural residues. Energy is one of the key factors in the development of Sudan's national economy. We present an overview of the energy situation in Sudan, with reference to its end uses and its regional distribution. We separate energy sources into two main types: conventional energy (biomass, petroleum products, and electricity) and non-conventional energy (solar power, wind energy, hydro-electric, etc.). Sudan has a relatively high abundance of sunshine and solar radiation, and has moderate biomass, hydro-electric and wind energy resources. Exploiting the available new and renewable energy sources to provide part of the local energy demand, as alternatives to conventional fossil energy, has become a major issue in Sudan's strategic planning of future energy policies. Sudan presents an important case study with respect to renewable energy, as it has a long history of meeting its energy needs by use of renewable sources; Sudan's portfolio is broad and diverse, due in part to the country's wide range of climates and landscapes. Like many African frontrunners in the utilisation of renewable energy, Sudan has a well-defined commitment to continue research, development, and implementation of new technologies. Sustainable low-carbon energy scenarios in the new century emphasize the importance of exploiting the untapped potential of renewable resources. Sudan's rural areas in particular, can benefit from this transition. The increased availability of reliable and efficient energy services will stimulate the development of new alternatives. We conclude that using renewable, environmentally friendly energy must be encouraged, promoted, implemented, and demonstrated by full-scale energy plants or collection devices, in particular for use in remote rural areas.


Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 5
Author(s):  
Patrick Moriarty ◽  
Damon Honnery

Because of the near-term risk of extreme weather events and other adverse consequences from climate change and, at least in the longer term, global fossil fuel depletion, there is worldwide interest in shifting to noncarbon energy sources, especially renewable energy (RE). Because of possible limitations on conventional renewable energy sources, researchers have looked for ways of overcoming these shortcomings by introducing radically new energy technologies. The largest RE source today is bioenergy, while solar energy and wind energy are regarded as having by far the largest technical potential. This paper reviews the literature on proposed new technologies for each of these three RE sources: microalgae for bioenergy, photolysis and airborne wind turbines. The main finding is that their proponents have often underestimated the difficulties they face and the time taken for their introduction on a very large scale.


Author(s):  
Bisma Imtiaz ◽  
Imran Zafar ◽  
Cui Yuanhui

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1164 ◽  
Author(s):  
Indre Siksnelyte-Butkiene ◽  
Edmundas Kazimieras Zavadskas ◽  
Dalia Streimikiene

Different power generation technologies have different advantages and disadvantages. However, if compared to traditional energy sources, renewable energy sources provide a possibility to solve the climate change and economic decarbonization issues that are so relevant today. Therefore, the analysis and evaluation of renewable energy technologies has been receiving increasing attention in the politics of different countries and the scientific literature. The household sector consumes almost one third of all energy produced, thus studies on the evaluation of renewable energy production technologies in households are very important. This article reviews the scientific literature that have used multiple-criteria decision-making (MCDM) methods as a key tool to evaluate renewable energy technologies in households. The findings of the conducted research are categorized according to the objectives pursued and the criteria on which the evaluation was based are discussed. The article also provides an overview and in-depth analysis of MCDM methods and distinguishes the main advantages and disadvantages of using them to evaluate technologies in households.


Author(s):  
Natalia Vukovic ◽  
Ulyana Koriugina ◽  
Daria Illarionova ◽  
Daria Pankratova ◽  
Polina Kiseleva ◽  
...  

This study aims to estimate and explore the experience of introducing renewable energy use in the context of the world’s smart cities. In this regard, the study points out that the use of green energy is an important part of sustainable development. Environmental problems are a matter of global concern. Hence sustainable development is one of the approaches to end the harmful anthropogenic impact. The work includes quantitative assessment methods, for example, statistics, quantitative analysis, analogy, and synthesis. As a result, the analysis confirms that the effective development of a smart green city is impossible without the introduction of several renewable energy sources, the integrated use of which will reduce the likelihood of problems with the city’s energy supply. Likewise, the outcome accentuates that the desire to fully switch to renewable energy sources (RES) can be accompanied by several problems as the creation of RES technologies does not always take the risk of abnormal situations into account. In conclusion, the research findings are recommended to be taken into consideration by researchers in the field of smart and sustainable cities development, as well as urbanists and economists for designing future smart green cities based on renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document