Editorial (Thematic Issue: Nanobiomaterials for Improving Stem Cell Applications in Tissue Engineering and Regenerative Medicine)

2016 ◽  
Vol 12 (2) ◽  
pp. 88-88
Author(s):  
Florin Iordache ◽  
Alexandru Grumezescu
2012 ◽  
Vol 1 (1) ◽  
pp. 75-82
Author(s):  
Jordan Greenberg ◽  
Veronica Fortino ◽  
Daniel Pelaez ◽  
Herman S. Cheung

2019 ◽  
Vol 14 (2) ◽  
pp. 80-82 ◽  
Author(s):  
Masoud Mozafari

This article presents a special issue of "Current Stem Cell Research & Therapy" devoted to exploring and exploiting tissue engineering through the design of multifunctional therapeutic systems. This lead article draws from twelve contributed articles to discuss the most recent advancements in this emerging field. The common theme in the contributed articles is the emerging therapeutic strategies, and a special appeal is made for collaboration between engineers and biologists for the development of multifunctional therapeutic systems for tissue engineering and regenerative medicine.


Author(s):  
Muhammad Shafiq ◽  
Onaza Ali ◽  
Seong-Beom Han ◽  
Dong-Hwee Kim

Stem cells have been extensively used in regenerative medicine and tissue engineering; however, they often lose their functionality because of the inflammatory microenvironment. This leads to their poor survival, retention, and engraftment at transplantation sites. Considering the rapid loss of transplanted cells due to poor cell-cell and cell-extracellular matrix (ECM) interactions during transplantation, it has been reasoned that stem cells mainly mediate reparative responses via paracrine mechanisms, including the secretion of extracellular vesicles (EVs). Ameliorating poor cell-cell and cell-ECM interactions may obviate the limitations associated with the poor retention and engraftment of transplanted cells and enable them to mediate tissue repair through the sustained and localized presentation of secreted bioactive cues. Biomaterial-mediated strategies may be leveraged to confer stem cells enhanced immunomodulatory properties, as well as better engraftment and retention at the target site. In these approaches, biomaterials have been exploited to spatiotemporally present bioactive cues to stem cell-laden platforms (e.g., aggregates, microtissues, and tissue-engineered constructs). An array of biomaterials, such as nanoparticles, hydrogels, and scaffolds, has been exploited to facilitate stem cells function at the target site. Additionally, biomaterials can be harnessed to suppress the inflammatory microenvironment to induce enhanced tissue repair. In this review, we summarize biomaterial-based platforms that impact stem cell function for better tissue repair that may have broader implications for the treatment of various diseases as well as tissue regeneration.


Author(s):  
Janet Zoldan ◽  
Thomas P. Kraehenbuehl ◽  
Abigail K. R. Lytton-Jean ◽  
Robert S. Langer ◽  
Daniel G. Anderson

2016 ◽  
Vol 4 ◽  
pp. 1-7 ◽  
Author(s):  
Biao Cheng ◽  
Shuliang Lu ◽  
Xiaobing Fu

Abstract Regenerative medicine (RM) is an emerging interdisciplinary field of research. Its clinical application focuses on the repair, replacement, and regeneration of cells, tissues, and organs by approaches including cell reprogramming, stem cell transplantation, tissue engineering, activating factors, and clone treatment. RM has become a hot point of research in China and other countries. China’s main and local governments have attached great importance to RM and given strong support in relevant policies and funding. About 3.5 billion RMB has been invested in this field. Since 1999, China has established about 30 RM centers and cooperates with many advanced countries in RM research and benefits from their cooperation. However, China needs to develop standards, regulations, and management practices suitable for the healthy development of RM. In this review, we focus on its great demand, capacity, and relative regulations.


Sign in / Sign up

Export Citation Format

Share Document