scholarly journals Stem Cell Based Tissue Engineering and Regenerative Medicine: A Review Focusing on Adult Stem Cells

2012 ◽  
Vol 1 (1) ◽  
pp. 75-82
Author(s):  
Jordan Greenberg ◽  
Veronica Fortino ◽  
Daniel Pelaez ◽  
Herman S. Cheung
2009 ◽  
Vol 14 (7) ◽  
pp. 755-768 ◽  
Author(s):  
Victor Sanjit Nirmalanandhan ◽  
G. Sitta Sittampalam

Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as “molecular adjuvants” or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade. ( Journal of Biomolecular Screening 2009:755-768)


2018 ◽  
Vol 18 (3) ◽  
pp. 264 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Pablo R. Montero-Olvera

First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources—including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues—have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.Keywords: Mesenchymal Stem Cells; Adult Stem Cells; Regenerative Medicine; Cell Differentiation; Tissue Engineering.


Hematology ◽  
2003 ◽  
Vol 2003 (1) ◽  
pp. 398-418 ◽  
Author(s):  
George Q. Daley ◽  
Margaret A. Goodell ◽  
Evan Y. Snyder

Abstract Studies of the regenerating hematopoietic system have led to the definition of many of the fundamental principles of stem cell biology. Therapies based on a range of tissue stem cells have been widely touted as a new treatment modality, presaging an emerging new specialty called regenerative medicine that promises to harness stem cells from embryonic and somatic sources to provide replacement cell therapies for genetic, malignant, and degenerative conditions. Insights borne from stem cell biology also portend development of protein and small molecule therapeutics that act on endogenous stem cells to promote repair and regeneration. Much of the newfound enthusiasm for regenerative medicine stems from the hope that advances in the laboratory will be followed soon thereafter by breakthrough treatments in the clinic. But how does one sort through the hype to judge the true promise? Are stem cell biologists and the media building expectations that cannot be met? Which diseases can be treated, and when can we expect success? In this review, we outline the realms of investigation that are capturing the most attention, and consider the current state of scientific understanding and controversy regarding the properties of embryonic and somatic (adult) stem cells. Our objective is to provide a framework for appreciating the promise while at the same time understanding the challenges behind translating fundamental stem cell biology into novel clinical therapies.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Amy L. Strong ◽  
Jeffrey M. Gimble ◽  
Bruce A. Bunnell

Adipose-derived stromal/stem cells (ASCs) are adult stem cells that have the potential to differentiate into mesenchymal lineage cells. The abundance of ASCs in adipose tissue and easy accessibility with relatively little donor site morbidity make them attractive candidate cells for tissue engineering and regenerative medicine. However, the underlying inflammatory process that occurs during ASC differentiation into adipocytes and osteoblast has not been extensively investigated. ASCs cultured in osteogenic and adipogenic differentiation medium were characterized by oil red o staining and alizarin red staining, respectively. ASCs undergoing osteogenic and adipogenic differentiation were isolated on days 7, 14, and 21 and assessed by qRT-PCR for the expression of pro- and anti-inflammatory cytokines. ASCs undergoing osteogenic differentiation expressed a distinct panel of cytokines that differed from the cytokine profile of ASCs undergoing adipogenic differentiation at each of the time points analyzed. Mapping the cytokine expression profile during ASC differentiation will provide insight into the role of inflammation in this process and identify potential targets that may aid in enhancing osteogenic or adipogenic differentiation for the purposes of tissue engineering and regenerative medicine.


Author(s):  
Muhammad Shafiq ◽  
Onaza Ali ◽  
Seong-Beom Han ◽  
Dong-Hwee Kim

Stem cells have been extensively used in regenerative medicine and tissue engineering; however, they often lose their functionality because of the inflammatory microenvironment. This leads to their poor survival, retention, and engraftment at transplantation sites. Considering the rapid loss of transplanted cells due to poor cell-cell and cell-extracellular matrix (ECM) interactions during transplantation, it has been reasoned that stem cells mainly mediate reparative responses via paracrine mechanisms, including the secretion of extracellular vesicles (EVs). Ameliorating poor cell-cell and cell-ECM interactions may obviate the limitations associated with the poor retention and engraftment of transplanted cells and enable them to mediate tissue repair through the sustained and localized presentation of secreted bioactive cues. Biomaterial-mediated strategies may be leveraged to confer stem cells enhanced immunomodulatory properties, as well as better engraftment and retention at the target site. In these approaches, biomaterials have been exploited to spatiotemporally present bioactive cues to stem cell-laden platforms (e.g., aggregates, microtissues, and tissue-engineered constructs). An array of biomaterials, such as nanoparticles, hydrogels, and scaffolds, has been exploited to facilitate stem cells function at the target site. Additionally, biomaterials can be harnessed to suppress the inflammatory microenvironment to induce enhanced tissue repair. In this review, we summarize biomaterial-based platforms that impact stem cell function for better tissue repair that may have broader implications for the treatment of various diseases as well as tissue regeneration.


2020 ◽  
Vol 21 (2) ◽  
pp. 1-8
Author(s):  
Afadhali Denis Russa

Stem cell technology and its application in regenerative medicine is the future gateway for the treatment of most non-communicable diseases (NCDs). As the burden of NCDs continues to rises globally, regenerating the cells, tissues and organs will be the mainstream treatment option. The world is prepared for this intriguing but promising avenue of biomedical technology and medicine but Africa is grossly lagging far behind. African governments, universities, research and health institutions need to take a leading role in empowering and mainstreaming stem cell research.  Moreover, for Africa, there is a huge potential for translating stem cell technology into clinical treatments due to the fact that there are limited treatment options for life-threatening forms of NCDs.  Some African countries have well-developed stem cell facilities and large-scale stem cell therapy centers. The use of adult stem cells in liver failure, diabetes and cardiac infarcts has shown success in some African countries. The present work reviews the status, potential and future prospects of stem cell technology and regenerative medicine in Tanzania with particular emphasis on the adult stem cells applicability into the immediate use inpatient care.  The paper also reviews the available cell identification systems and markers and moral and ethical aspects of stem cell science necessary in the translational treatment regimens. 


2021 ◽  
Vol 8 (5) ◽  
pp. 68
Author(s):  
Diogo E.S. Nogueira ◽  
Joaquim M.S. Cabral ◽  
Carlos A.V. Rodrigues

Research on human stem cells, such as pluripotent stem cells and mesenchymal stromal cells, has shown much promise in their use for regenerative medicine approaches. However, their use in patients requires large-scale expansion systems while maintaining the quality of the cells. Due to their characteristics, bioreactors have been regarded as ideal platforms to harbour stem cell biomanufacturing at a large scale. Specifically, single-use bioreactors have been recommended by regulatory agencies due to reducing the risk of product contamination, and many different systems have already been developed. This review describes single-use bioreactor platforms which have been used for human stem cell expansion and differentiation, along with their comparison with reusable systems in the development of a stem cell bioprocess for clinical applications.


Author(s):  
Hojjatollah Nazari ◽  
Vahid Yaghoubi Naei ◽  
Asieh Heirani Tabasi ◽  
Abolfazl Badripour ◽  
Reza Akbari Asbagh ◽  
...  

Abstract Regenerative medicine is an emerging therapeutic method that aims to reconstruct tissues and organs. This advanced therapeutic approach has demonstrated great potential in addressing the limitations of medical and surgical procedures for treating perineal fistula in patients with Crohn’s disease. Recent developments in stem cell technology have led to a massive good manufacturing practices (GMPs) production of various stem cells, including mesenchymal and embryonic cells, along with induction of pluripotent stem cells to repair damaged tissues in the fistula. The recent advances in separation and purification of exosomes, as biologic nanovesicles carrying anti-inflammatory and regenerative agents, have made them powerful tools to treat this inflammatory disease. Further, tremendous advances in nanotechnology, biomaterials, and scaffold fabrication methods enable tissue engineering methods to synthesize tissue-like structures to assist surgical techniques. This review focuses on advanced regenerative-based methods including stem cell therapy, exosome therapy, and tissue engineering used in the treatment of perianal fistula. Relevant in vitro and in vivo studies and the latest innovations in implementation of regenerative medicine for this disease are also separately reviewed. Additionally, current challenges regarding implementation of g stem cells, exosomes, and tissue engineering methods for bridging the gaps between laboratory findings and clinic application will be discussed.


2019 ◽  
Vol 14 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Mukta Agrawal ◽  
Amit Alexander ◽  
Junaid Khan ◽  
Tapan K. Giri ◽  
Sabahuddin Siddique ◽  
...  

Stem cells are the specialized cell population with unique self-renewal ability and act as the precursor of all the body cells. Broadly, stem cells are of two types one is embryonic stem cells while the other is adult or somatic stem cells. Embryonic stem cells are the cells of zygote of the blastocyst which give rise to all kind of body cells including embryonic cells, and it can reconstruct a complete organism. While the adult stem cells have limited differentiation ability in comparison with embryonic stem cells and it proliferates into some specific kind of cells. This unique ability of the stem cell makes it a compelling biomedical and therapeutic tool. Stem cells primarily serve as regenerative medicine for particular tissue regeneration or the whole organ regeneration in any physical injury or disease condition (like diabetes, cancer, periodontal disorder, etc.), tissue grafting and plastic surgery, etc. Along with this, it is also used in various preclinical and clinical investigations, biomedical engineering and as a potential diagnostic tool (such as the development of biomarkers) for non-invasive diagnosis of severe disorders. In this review article, we have summarized the application of stem cell as regenerative medicine and in the treatment of various chronic diseases.


Sign in / Sign up

Export Citation Format

Share Document