Anti-cancer Effects of Epigenetics Drugs Scriptaid and Zebularine in Human Breast Adenocarcinoma Cells

Author(s):  
Zhi Hung Yap ◽  
Wei Yang Kong ◽  
Abdur Rahmaan Azeez ◽  
Chee-Mun Fang ◽  
Siew Ching Ngai

Background: High relapse and metastasis progression in breast cancer patients have prompted the need to explore alternative treatments. Epigenetic therapy has emerged as an attractive therapeutic strategy due to the reversibility of epigenome structures. Objective: This study investigated the anti-cancer effects of epigenetic drugs scriptaid and zebularine in human breast adenocarcinoma MDA-MB-231 and MCF-7 cells. Methods: First, the half maximal inhibitory concentration (IC50) of scriptaid, zebularine and the combination of both drugs on human breast adenocarcinoma MDA-MB-231 cells was determined. Next, MDA-MB-231 and MCF-7 cells were treated with scriptaid, zebularine and the combination of both. After treatments, the anti-cancer effects were evaluated via cell migration assay, cell cycle analysis and apoptotic studies, which included histochemical staining and reverse-transcriptase polymerase chain reaction (RT-PCR) of the apoptotic genes. Results: Both epigenetic drugs inhibited cell viability in a dose-dependent manner with 2 nM scriptaid, 8 µM zebularine and combination of 2 nM scriptaid and 2 µM zebularine. Both MDA-MB-231 and MCF-7 cells exhibited a reduction in cell migration after the treatments. In particular, MDA-MB-231 cells exhibited a significant reduction in cell migration (p < 0.05) after the treatments of zebularine and the combination of scriptaid and zebularine. Besides, cell cycle analysis demonstrated that scriptaid and the combination of both drugs could induce cell cycle arrest at the G0/G1 phase in both MDA-MB-231 and MCF-7 cells. Furthermore, histochemical staining allowed the observation of apoptotic features, such as nuclear chromatin condensation, cell shrinkage, membrane blebbing, nuclear chromatin fragmentation and cytoplasmic extension, in both MDA-MB-231 and MCF-7 cells after the treatments. Further apoptotic studies revealed that the upregulation of pro-apoptotic Bax, downregulation of anti-apoptotic Bcl-2 and elevation of Bax/Bcl-2 ratio were found in MDA-MB-231 cells treated with zebularine and MCF-7 cells treated with all drug regimens. Conclusion: Collectively, these findings suggest that scriptaid and zebularine are potential anti-cancer drugs, either single or in combination, for the therapy of breast cancer. Further investigations of the gene regulatory pathways directed by scriptaid and zebularine are definitely warranted in the future.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2634
Author(s):  
Farzana Nazir ◽  
Mudassir Iqbal

Cellulose based materials are emerging in the commercial fields and high-end applications, especially in biomedicines. Aminated cellulose derivatives have been extensively used for various applications but limited data are available regarding its cytotoxicity studies for biomedical application. The aim of this study is to synthesize different 6-deoxy-amino-cellulose derivatives from Microcrystalline cellulose (MCC) via tosylation and explore their cytotoxic potential against normal fibroblasts, melanoma and breast cancer. 6-deoxy-6-hydrazide Cellulose (Cell Hyd) 6-deoxy-6-diethylamide Cellulose (Cell DEA) and 6-deoxy-6-diethyltriamine Cellulose (Cell DETA) were prepared and characterized by various technologies like Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy (NMR), X-ray diffractogram (XRD), Scanning Electron microscopy (SEM), Elemental Analysis and Zeta potential measurements. Cytotoxicity was evaluated against normal fibroblasts (NIH3T3), mouse skin melanoma (B16F10), human epithelial adenocarcinoma (MDA-MB-231) and human breast adenocarcinoma (MCF-7) cell lines. IC50 values obtained from cytotoxicity assay and live/dead assay images analysis showed MCC was non cytotoxic while Cell Hyd, Cell DEA and Cell DETA exhibited noncytotoxic activity up to 200 μg/mL to normal fibroblast cells NIH3T3, suggesting its safe use in medical fields. The mouse skin melanoma (B16F10) are the most sensitive cells to the cytotoxic effects of Cell Hyd, Cell DEA and Cell DETA, followed by human breast adenocarcinoma (MCF-7). Based on our study, it is suggested that aminated cellulose derivatives could be promising candidates for tissue engineering applications and in cancer inhibiting studies in future.


Author(s):  
Khadije Saket ◽  
Roshanak Salari ◽  
Ehsan Saburi ◽  
Mahdi Yousefi ◽  
Mohammad Ali Khodadoust ◽  
...  

Background: Breast cancer is the most common known malignancy in women and it is therefore very important to prevent and treat this cancer. In this experimental study, the anti-breast cancer effect of Urginea matrima was investigated. Method: Breast cancer cell lines [MCF-7 and MDA-MB231] and L929 normal cells [as a control group] were cultivated in DMEM medium. Bulb aqueous and hydroalcoholic extracts [70:30] were prepared through maceration method. The cultured cells were treated with different concentrations [6, 3, 1.5, 0.75, 0.375, 0.187 and 0.093 μg/mL] of U.maritima extracts for 24, 48 and 72 h. Toxicity of the extracts on cells were examined using MTT test. The Annexin V–FITC Apoptosis Detection Kit was used to evaluate apoptosis and necrosis. Flow cytometry technique was employed to evaluate the cell cycle and the cell migration was evaluated by Scratch method. Data were analyzed by GraphPad Prism and SPSS software and P <0.05 was considered significant. Result: Results showed that both extracts of U.maritima in the concentration of 1.5 and 3 μg/ ml at 24,48 and 72h presented cytotoxicity effect on MCF7 cell line . Also, both extracts in the concentration of 3 μg/ ml at 24 and 72h, and in the concentration of 6 μg/ ml at 72h showed cytotoxicity effect significantly on MDA-MB231 cells. In addition, the plant extracts at the dosage of 3 and 6 μg/ ml induced an accumulation of G0/G1 cells, as well as reduce in S and G2/M phases in MCF-7 and MDA-MB231 cells. Moreover, the aqueous and hydroalcoholic of U.maritima extracts at three concentrations [ 1.5, 3 and 6 μg/ ml ] in 24h inhibited the cell migration by 60% up to 70% respectively. In addition, the content of phenolic compounds in both extracts [aqueous and hydroalcoholic] was 7 mg and 10 mg gallic acid equivalent per gram of the crude extract, respectively. Conclusion: Our results suggest that U.maritima extracts has significant anti-cancer activity against breast cancer cells due to cell cycle arrest and induction of apoptosis pathway.


Planta Medica ◽  
2005 ◽  
Vol 71 (3) ◽  
pp. 237-243 ◽  
Author(s):  
Po-Lin Kuo ◽  
Ya-Ling Hsu ◽  
Ta-Chen Lin ◽  
Liang-Tzung Lin ◽  
Jiunn-Kae Chang ◽  
...  

2015 ◽  
Vol 11 (2) ◽  
pp. 80-92 ◽  
Author(s):  
T.G.C. Uy ◽  
A.M. Licuanan ◽  
G.E.D. Angeles ◽  
M.L.C.C. Bote ◽  
E.A.B. Macauyag ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 272 ◽  
Author(s):  
Mi-Yeon Jung ◽  
Chang-Seob Seo ◽  
Seon-Eun Baek ◽  
Jaemin Lee ◽  
Myoung-Sook Shin ◽  
...  

Gami-soyosan is a medicinal herbal formulation prescribed for the treatment of menopausal symptoms, including hot flashes and osteoporosis. Gami-soyosan is also used to treat similar symptoms experienced by patients with breast cancer. The incidence of breast cancer in women receiving hormone replacement therapy is a big burden. However, little is known about the components and their mechanism of action that exhibit these beneficial effects of Gami-soyosan. The aim of this study was to simultaneously analyze compounds of Gami-soyosan, and determine their cytotoxic effects on estrogen receptor (ER)-positive MCF-7 human breast adenocarcinoma cells. We established a simultaneous analysis method of 18 compounds contained in Gami-soyosan and found that, among the various compounds in Gami-soyosan, gallic acid (1), decursin (17), and decursinol angelate (18) suppressed the viability of MCF-7 cells. Gallic acid (1), decursin (17), and decursinol angelate (18) induced apoptotic cell death and significantly increased poly (ADP-ribose) polymerase (PARP) cleavage and the Bcl-2-associated X protein/ B-cell lymphoma 2 (Bax/Bcl-2) ratio. Decursin (17) increased the expression of cleaved caspases-8, -9, -7, and -3. Decursinol angelate (18) increased the expression of cleaved caspase-8 and -7. These three components altered the different apoptosis signal pathways. Collectively, gallic acid (1), decursin (17), and decursinol angelate (18) may be used to inhibit cell proliferation synergistically in patients with ER-positive breast cancer.


Sign in / Sign up

Export Citation Format

Share Document