A Novel Botulinum Toxin TAT-EGFP-HCS Fusion Protein Capable of Specific Delivery Through the Blood-brain Barrier to the Central Nervous System

2019 ◽  
Vol 18 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Fengjin Hao ◽  
Yueqin Feng ◽  
Yifu Guan

Objective: Botulinum toxin has many applications in the treatment of central diseases, as biological macromolecules, it is difficult to pass through the blood-brain barrier which greatly limits their application. In this paper, we verified whether the botulinum toxin heavy chain HCS has a specific neural guidance function. Methods: We have constructed a fusion protein with botulinum toxin heavy chain and a membrane penetrating peptide TAT (TAT-EGFP-HCS). Recombinant plasmid of botulinum toxin light chain (LC) and TAT were also constructed. The biological activity of HCS, LC, TAT-EGFP-HCS and TAT-EGFP-LC were measured by its ability to cleave protein SNAP-25. The intracellular expression efficiency was evaluated by detecting the fluorescence intensity of EGFP in the cells by fluorescence microscopy and FACS. In addition, we also determined the effect of the above plasmid expression on the apoptosis of PC12 cells. Finally, the tissue specificity of TAT-EGFP-HCS in vivo experiments was also examined. Results: In the present study, we have constructed a fusion protein with botulinum toxin heavy chain and a membrane penetrating peptide TAT which can lead the entire molecule through the blood-brain barrier and reach the central nervous system. Moreover, we also examined the biological activities of this recombinant biological macromolecule and its physiological effects on nerve cells in vitro and in vivo. Conclusion: TAT-EGFP-HSC expressed in vitro has neural guidance function and can carry large proteins across the cell membrane without influencing the biological activity.

2018 ◽  
Author(s):  
Tae-Eun Park ◽  
Nur Mustafaoglu ◽  
Anna Herland ◽  
Ryan Hasselkus ◽  
Robert Mannix ◽  
...  

The highly specialized human brain microvascular endothelium forms a selective blood-brain barrier (BBB) with adjacent pericytes and astrocytes that restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic ‘organ-on-a-chip’ (Organ Chip) model of the BBB lined by induced pluripotent stem cell-derived human brain microvascular endothelium (iPS-BMVEC) interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins, multiple functional efflux pumps, and displays selective transcytosis of peptides and anti-transferrin receptor antibodies previously observed in vivo. This increased level of barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB.The human blood-brain barrier (BBB) is a unique and selective physiological barrier that controls transport between the blood and the central nervous system (CNS) to maintain homeostasis for optimal brain function. The BBB is composed of brain microvascular endothelial cells (BMVECs) that line the capillaries as well as surrounding extracellular matrix (ECM), pericytes, and astrocytes, which create a microenvironment that is crucial to BBB function1. The brain microvascular endothelium differs from that found in peripheral capillaries based on its complex tight junctions, which restrict paracellular transit and instead, require that transcytosis be used to transport molecules from the blood through the endothelium and into the CNS2. BMVECs also express multiple broad-spectrum efflux pumps on their luminal surface that inhibit uptake of lipophilic molecules, including many drugs, into the brain3,4. The astrocytes and pericytes provide signals that are required for differentiation of the BMVECs5,6, and all three cell types are needed to maintain BBB integrity in vivo as well as in vitro7–9. The BBB is also of major clinical relevance because dysfunction of the BBB associated is observed in many neurological diseases, and the efficacy of drugs designed to treat neurological disorders is often limited by their inability to cross the BBB10. Unfortunately, neither animal models of the BBB nor in vitro cultures of primary or immortalized human BMVECs alone effectively mimic the barrier and transporter functions of the BBB observed in humans11–14. Thus, there is a great need for a human BBB model that could be used to develop new and more effective CNS-targeting therapeutics and delivery technologies as well as advance fundamental and translational research8,9.Development of human induced pluripotent stem (iPS) cell technology has enabled differentiation of brain-like microvascular endothelial cells (iPS-BMVECs) that exhibit many properties of the human BBB, including well-organized tight junctions, expression of nutrient transporters and polarized efflux transporter activity15,16. The trans-endothelial electrical resistance (TEER) values exhibited by the permeability barrier generated by these human iPS-BMVECs reach physiological levels (∼3000-5000 Ω·cm2) within 24-48 h when cultured in Transwell inserts or within a microfluidic organ-on-a-chip (Organ Chip) device15,17–19, a level that is more than an order of magnitude higher than TEER values previously reported in other in vitro human BBB models6,17,20.However, the usefulness of these iPS-BMVEC models for studies on targeted delivery to the CNS is limited because they can only maintain these high TEER levels for ∼2 days, and the expression of efflux pumps in these iPS-BMVECs does not fully mimic those of human brain endothelium in vivo21. Here, we describe the development of an enhanced human BBB model created with microfluidic Organ Chip culture technology22,23 that contains human iPS-BMVECs interfaced with primary human pericytes and astrocytes, and that uses a developmentally-inspired differentiation protocol24–26. The resulting human BBB Chip exhibits physiologically relevant levels of human BBB function for at least one week in vitro, including low barrier permeability and expression of multiple efflux pumps and transporter functions that are required for analysis of drug and therapeutic antibody transport.


2017 ◽  
Vol 242 (17) ◽  
pp. 1669-1678 ◽  
Author(s):  
Duc TT Phan ◽  
R Hugh F Bender ◽  
Jillian W Andrejecsk ◽  
Agua Sobrino ◽  
Stephanie J Hachey ◽  
...  

The blood–brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood–brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer’s disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood–brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood–brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood–brain barrier pathology, recent advances in the development of novel 3D blood–brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood–brain barrier, and provide an outlook on how these blood–brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood–Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer’s disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB – something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 65 ◽  
Author(s):  
Elisabetta Muntoni ◽  
Katia Martina ◽  
Elisabetta Marini ◽  
Marta Giorgis ◽  
Loretta Lazzarato ◽  
...  

Glioblastoma is the most common and invasive primary tumor of the central nervous system and normally has a negative prognosis. Biodistribution in healthy animal models is an important preliminary study aimed at investigating the efficacy of chemotherapy, as it is mainly addressed towards residual cells after surgery in a region with an intact blood–brain barrier. Nanoparticles have emerged as versatile vectors that can overcome the blood–brain barrier. In this experimental work, solid lipid nanoparticles, prepared using fatty acid coacervation, have been loaded with an active lipophilic ester of cytotoxic drug methotrexate, and functionalized with either transferrin or insulin, two proteins whose receptors are abundantly expressed on the blood–brain barrier. Functionalization has been achieved by grafting a maleimide moiety onto the nanoparticle’s surface and exploiting its reactivity towards thiolated proteins. The nanoparticles have been tested in vitro on a blood–brain barrier cellular model and in vivo for biodistribution in Wistar rats. Drug metabolites, in particular 7-hydroxymethotrexate, have also been investigated in the animal model. The data obtained indicate that the functionalization of the nanoparticles improved their ability to overcome the blood–brain barrier when a PEG spacer between the proteins and the nanoparticle’s surface was used. This is probably because this method provided improved ligand–receptor interactions and selectivity for the target tissue.


2021 ◽  
Author(s):  
Elif S. Seven ◽  
Yasin B. Seven ◽  
Yiqun Zhou ◽  
Sijan Poudel-Sharma ◽  
Juan J. Diaz Rucco ◽  
...  

The blood-brain barrier (BBB) is a major obstacle for drug delivery to the central nervous system (CNS) such that most therapeutics lack efficacy against brain tumors or neurological disorders due...


2004 ◽  
Vol 72 (9) ◽  
pp. 4985-4995 ◽  
Author(s):  
Yun C. Chang ◽  
Monique F. Stins ◽  
Michael J. McCaffery ◽  
Georgina F. Miller ◽  
Dan R. Pare ◽  
...  

ABSTRACT Cryptococcal meningoencephalitis develops as a result of hematogenous dissemination of inhaled Cryptococcus neoformans from the lung to the brain. The mechanism(s) by which C. neoformans crosses the blood-brain barrier (BBB) is a key unresolved issue in cryptococcosis. We used both an in vivo mouse model and an in vitro model of the human BBB to investigate the cryptococcal association with and traversal of the BBB. Exposure of human brain microvascular endothelial cells (HBMEC) to C. neoformans triggered the formation of microvillus-like membrane protrusions within 15 to 30 min. Yeast cells of C. neoformans adhered to and were internalized by the HBMEC, and they crossed the HBMEC monolayers via a transcellular pathway without affecting the monolayer integrity. The histopathology of mouse brains obtained after intravenous injection of C. neoformans showed that the yeast cells either were associated with endothelial cells or escaped from the brain capillary vessels into the neuropil by 3 h. C. neoformans was found in the brain parenchyma away from the vessels by 22 h. Association of C. neoformans with the choroid plexus, however, was not detected during up to 10 days of observation. Our findings indicate that C. neoformans cells invade the central nervous system by transcellular crossing of the endothelium of the BBB.


Physiology ◽  
1998 ◽  
Vol 13 (6) ◽  
pp. 287-293 ◽  
Author(s):  
Gerald A. Grant ◽  
N. Joan Abbott ◽  
Damir Janigro

Endothelial cells exposed to inductive central nervous system factors differentiate into a blood-brain barrier phenotype. The blood-brain barrier frequently obstructs the passage of chemotherapeutics into the brain. Tissue culture systems have been developed to reproduce key properties of the intact blood-brain barrier and to allow for testing of mechanisms of transendothelial drug permeation.


Sign in / Sign up

Export Citation Format

Share Document