The Link between Exercise and Homocysteine in the Alzheimer’s disease: A Bioinformatic Network Model

Author(s):  
Luana Leão ◽  
Laís Felício ◽  
Knut Engedal ◽  
Gro Tangen ◽  
Kari Kristiansen ◽  
...  

: Elevated peripheral expression of homocysteine (Hcy) is associated with an increased risk of coronary heart disease and stroke, diabetes, and cancer. It is also associated with cognitive impairment as it has been reported that high levels of Hcy cause cognitive dysfunction and memory deficit. Among several etiological factors that contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), Hcy seems to directly contribute to the generation of neurotoxicity factors. This study aims to hypothesize the molecular mechanism by which exercise can reduce the risk of neurological complications promoted by hyperhomocysteinemia (HHcy), and discuss how exercise could reduce the risk of developing AD by using bioinformatics network models. According to the genes network, there are connections between proteins and amino acids associated with Hcy, exercise, and AD. Studies have evidenced that exercise may be one of several processes by which nitric acid availability can be maximized in the human body, which is particularly important in reducing cell loss and tau pathology , thereby reducing in the risk of complications associated with HHcy and AD.

2021 ◽  
pp. 1-14
Author(s):  
Ana Baena ◽  
Yamile Bocanegra ◽  
Valeria Torres ◽  
Clara Vila-Castelar ◽  
Edmarie Guzmán-Vélez ◽  
...  

Background: Greater neuroticism has been associated with higher risk for Alzheimer’s disease (AD) dementia. However, the directionality of this association is unclear. We examined whether personality traits differ between cognitively-unimpaired carriers of autosomal-dominant AD (ADAD) and non-carriers, and are associated with in vivo AD pathology. Objective: To determine whether personality traits differ between cognitively unimpaired ADAD mutation carriers and non-carriers, and whether the traits are related to age and AD biomarkers. Methods: A total of 33 cognitively-unimpaired Presenilin-1 E280A mutation carriers and 41 non-carriers (ages 27–46) completed neuropsychological testing and the NEO Five-Factor Personality Inventory. A subsample (n = 46; 20 carriers) also underwent tau and amyloid PET imaging. Results: Carriers reported higher neuroticism relative to non-carriers, although this difference was not significant after controlling for sex. Neuroticism was positively correlated with entorhinal tau levels only in carriers, but not with amyloid levels. Conclusion: The finding of higher neuroticism in carriers and the association of this trait with tau pathology in preclinical stages of AD highlights the importance of including personality measures in the evaluation of individuals at increased risk for cognitive impairment and dementia. Further research is needed to characterize the mechanisms of these relationships.


2020 ◽  
Author(s):  
Christine W. Fung ◽  
Jia Guo ◽  
Helen Y. Figueroa ◽  
Elisa E. Konofagou ◽  
Karen E. Duff

AbstractIn the early stages of Alzheimer’s disease (AD), tau pathology first develops in the entorhinal cortex (EC), then spreads to the hippocampus and at later stages, to the neocortex. Pathology in the neocortex correlates with impaired cognitive performance. Overall, tau pathology correlates well with neurodegeneration but the spatial and temporal association between tau pathology and overt volume loss is unclear. Using in vivo magnetic resonance imaging (MRI) with tensor-based morphometry (TBM) we mapped the spatio-temporal pattern of structural changes in a mouse model of AD-like progressive tauopathy. A novel, co-registered in vivo MRI atlas identified particular regions in the medial temporal lobe (MTL) that had significant volume reduction. The medial entorhinal cortex (MEC) and pre-/para-subiculum (PPS) had the most significant atrophy at the early stage, but atrophy then spread into the hippocampus, most notably, the CA1, dentate gyrus (DG) and subiculum (Sub). TBM-related atrophy in the DG and Sub preceded overt cell loss that has been reported in ex vivo studies in the same mouse model. By unifying an ex vivo 3D reconstruction of tau pathology with the TBM-MRI results we mapped the progression of atrophy in the MTL with the corresponding spread of tau pathology. Our study shows that there is an association between the spread of tau pathology and TBM-related atrophy from the EC to the hippocampus, but atrophy in the DG and Sub preceded overt cell loss.One Sentence SummarySpread of tau pathology in a mouse model of Alzheimer’s disease assessed by MRI was associated with reduced brain tissue volume but not neuronal loss.


Sign in / Sign up

Export Citation Format

Share Document