Evaluation of Minimum Quantity Lubrication Grinding with Nano-particles and Recent Related Patents

2013 ◽  
Vol 7 (2) ◽  
pp. 167-181 ◽  
Author(s):  
Changhe Li ◽  
Sheng Wang ◽  
Qiang Zhang ◽  
Dongzhou Jia
2018 ◽  
Vol 7 (2) ◽  
pp. 116-120
Author(s):  
Amrit Pal ◽  
Hazoor Singh Sidhu

Owing to environmental concerns and growing regulations over contamination and pollution, the demand for renewable and biodegradable cutting fluids is rising. The aim of this paper is to review the eco-friendly and user-friendly minimum quantity lubrication (MQL) technique using vegetable-based oil and solid lubricant in different machining processes. It has been reported in various literature that the minimum quantity lubrication (MQL) method using vegetable oil-based cutting fluid shows superior performance as compared to dry and wet machining. The major benefits of MQL are reduction of consumption of cutting fluid, cost saving, reduction of impact to the environment and improved overall performances in cutting operation and the surface quality. To achieve improved thermal conductivity researchers focused attention on nano fluids. Nano fluids are nano-metered sized colloidal suspensions in the base fluid like water, oil, glycol, etc. The application of nano fluid controls the tool wear by reducing the temperature. Impingement of the nano-particles with high pressure in MQL enables entry of nano-particles at the tool chip interface. Thus it reduces the coefficient of friction and improves machining performance significantly.


2021 ◽  
Vol 309 ◽  
pp. 01041
Author(s):  
S. Suresh ◽  
N. Sateesh ◽  
Ramsubbiah ◽  
B. Ch Nookaraju ◽  
D. Sivanagaraju ◽  
...  

This paper presents an investigation into the minimum quantity lubrication mode with Nano fluid during turning of titanium (TI6AL4V) alloy. In heavy cutting conditions, minimum quantity lubrication (MQL) has been observed, that, Nano-cutting fluids which have enrich thermal conductivity than base fluid, are begun to be used in MQL system. The addition of the required nano particle ratio to the base liquid is one of the most important issues that arise in this method. Therefore, this study aimed to find the optimum distribution rate of graphene nano particles having excellent properties and machining parameters. To do this, graphene nano particles were added to a vegetable-based cutting solution. Nano-cutting fluids were prepared in different volumetric concentrations. When turning of titanium (TI6AL4V) alloy, these Nano fluids were used in the MQL system. Three different parameters were added to the experimental design to study the performance of Nano fluids under several cutting conditions. i.e., speed, feed rate and depth off cut. Apart from this experimental design, three tests were carried out at each concentration ratio while keeping the machining parameters constant to clearly see the impact of concentration rates on surface roughness, flank wear. And crater wear. In addition, while chipping/fracture, were observed under all cutting conditions


Author(s):  
S Vignesh ◽  
U Mohammed Iqbal

The current paper is concentrated on the mechanical and machining process exploration of metallic nano-lubricant with the concept of tri-hybridization with improved lubricative and cooling properties by using TiO2, ZnO and Fe2O3 metallic nano particles with neat cold-pressed coconut oil in a fixed volumetric proportion (10:90). End milling of gummy material like aluminium requires a solution to the conventional dry and wet machining due to high productivity requirement and to obtain good surface quality. So, the prepared nanofluids were tested for their rheological behavior and latter introduced into milling of AA7075 as a solution to the above stated problem. Overall, the nanofluids gave good performance when compared to conventional methods. Furthermore, the results obtained from the experiments confirm that the trio-hybridized lubricant has reduced the cutting force, tool wear and surface roughness in an improved way when related to monotype nano fluids. The response surface methodology is performed to evaluate the interaction of process parameters in minimum quantity lubrication environment with nano fluids. The results show that the cutting forces, surface roughness, tool wear was minimized while machining with hybrid cutting fluids and well within the desirability.


The man or woman of an object is impacted with the useful resource of the surface honesty gotten via crushing activities. Pounding is one of the maximum prevalently utilized floor completing procedure portrayed with the aid of top notch manner talents as some distance as floor crowning glory and fabric evacuation price. besides it wishes tremendously immoderate specific power and gives ascend to fantastically excessive temperature, which finally ends up into excessive final anxieties, smaller scale splits and eat that is beaten with the aid of utilizing coolants on this manner lessening rubbing and giving possible cooling of work-wheel interface. Use of widespread coolants is in most instances incapable due to unavailability of the liquid to pounding vicinity and movie bubbling. A huge lot of the regular coolants gift fitness risk and bolster nursery effect. the inducement inside the returned of this exam is to analyze the base quantity of grease to be carried out at the AISI 52100 bearing metallic with the aid of the use of severa period nano particles. it is visible that the usage of nano particles as ointments is advanced to the traditional dry and moist oil. there's an in depth abatement in the temperature and a putting exchange inside the nature of the ground as a long way as floor harshness is widespread. This creation clarifies the usage of Palm oil as conveying medium and nano crystalline graphite powder as grease.


2017 ◽  
Vol 31 (2) ◽  
pp. 17 ◽  
Author(s):  
Sirsendu Mahata ◽  
Ankesh Samanta ◽  
Joydip Roy ◽  
Bijoy Mandal ◽  
Santanu Das

2015 ◽  
Vol 8 (3) ◽  
pp. 208-224 ◽  
Author(s):  
Benkai Li ◽  
Changhe Li ◽  
Yaogang Wang ◽  
Yanbin Zhang ◽  
Min Yang ◽  
...  

2020 ◽  
Vol 13 ◽  
Author(s):  
Gaurav Gaurav ◽  
Abhay Sharma ◽  
G S Dangayach ◽  
M L Meena

Background: Minimum quantity lubrication (MQL) is one of the most promising machining techniques that can yield a reduction in consumption of cutting fluid more than 90 % while ensuring the surface quality and tool life. The significance of the MQL in machining makes it imperative to consolidate and analyse the current direction and status of research in MQL. Objective: This study aims to assess global research publication trends and hot topics in the field of MQL among machining process. The bibliometric and descriptive analysis are the tools that the investigation aims to use for the data analysis of related literature collected from Scopus databases. Methods: Various performance parameters are extracted, such as document types and languages of publication, annual scientific production, total documents, total citations, and citations per article. The top 20 of the most relevant and productive sources, authors, affiliations, countries, word cloud, and word dynamics are assessed. The graphical visualisation of the bibliometric data is presented in terms of bibliographic coupling, citation, and co-citation network. Results: The investigation reveals that the International Journal of Machine Tools and Manufacture (2611 citations, 31 hindex) is the most productive journal that publishes on MQL. The most productive institution is the University of Michigan (32 publications), the most cited country is Germany (1879 citations), and the most productive country in MQL is China (124 publications). The study shows that ‘Cryogenic Machining’, ‘Sustainable Machining’, ‘Sustainability’, ‘Nanofluid’ and ‘Titanium alloy’ are the most recent keywords and indications of the hot topics and future research directions in the MQL field. Conclusion: The analysis finds that MQL is progressing in publications and the emerging with issues that are strongly associated with the research. This study is expected to help the researchers to find the most current research areas through the author’s keywords and future research directions in MQL and thereby expand their research interests.


Sign in / Sign up

Export Citation Format

Share Document