Effects of coupled-/soluble- Copper generating from Copper-doped Titanium Dioxide Nanotubes on Cell Response

Author(s):  
Pengyu Gao ◽  
Xiao Luo ◽  
Benli Yin ◽  
Zhisha Jiao ◽  
JunJi Piao ◽  
...  

Background: Endothelialization in vitro is a very common method for surface modification of cardiovascular materials. However, mature endothelial cells are not suitable because of the difficulty in obtaining and immunogenicity. Methods: In this work, we determined the appropriate amount of copper by constructing a copper-loaded titanium dioxide nanotube array that can catalyze the release of nitric oxide, compared the effects of coupled-/soluble- copper on stem cells, and then induced stem cells to differentiate into endothelial cells. Results: The results showed that it had a strong promotion effect on the differentiation of stem cells into endothelial cells which might be used for endothelialization in vitro Conclusions: SEM and EDS results prove that a high content of copper ions are indeed doped onto the surface of nanotubes with small amounts of Cu release. The release of NO confirms that the release of several samples within a period of time is within the physiological concentration

Author(s):  
Kamil Wartalski ◽  
Gabriela Gorczyca ◽  
Jerzy Wiater ◽  
Zbigniew Tabarowski ◽  
Małgorzata Duda

AbstractEndothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sangho Lee ◽  
Min Kyung Lee ◽  
Hyunjoon Kong ◽  
Young-sup Yoon

Various hydrogels are used to create vascular structure in vitro or to improve cell engraftment to overcome low cell survival in vivo, a main hurdle for bare cell therapy Recently we developed a modified alginate hydrogel within which microchannels are aligned to guide the direction and spatial organization of loaded cells. We investigated whether these cell constructs in which HUVECs and human mesenchymal stem cells (hMSCs) are co-loaded in this novel microchanneled hydrogel facilitate formation of vessels in vitro and in vivo, and enhance recovery of hindlimb ischemia. We crafted a modified alginate hydrogel which has microchannels, incorporates a cell adhesion peptide RGD, and was encapsulated with VEGF. We then compared vascular structure formation between the HUVEC only (2 x 105 cells) group and the HUVEC plus hMSC group. In the HUVEC+hMSC group, we mixed HUVECs and hMSCs at the ratio of 3:1. For cell tracking, we labeled HUVECs with DiO, a green fluorescence dye. After loading cells into the microchannels of the hydrogel, these constructs were cultured for seven days and were examined by confocal microscopy. In the HUVEC only group, HUVECs stands as round shaped cells without forming tubular structures within the hydrogel. However, in the HUVEC+hMSC group, HUVECs were stretched out and connected with each other, and formed vessel-like structure following pre-designed microchannels. These results suggested that hMSCs play a critical role for vessel formation by HUVECs. We next determined their in vivo effects using a mouse hindlimb ischemia model. We found that engineered HUVEC+hMSC group showed significantly higher perfusion over 4 weeks compared to the engineered HUVEC only group or bare cell (HUVEC) group. Confocal microscopic analysis of harvested tissues showed more robust vessel formation within and outside of the cell constructs and longer term cell survival in HUVEC+hMSC group compared to the other groups. In conclusion, this novel microchanneled alginate hydrogel facilitates aligned vessel formation of endothelial cells when combined with MSCs. This vessel-embedded hydrogel constructs consisting of HUVECs and MSCs contribute to perfusable vessel formation, prolong cell survival in vivo, and are effective for recovering limb ischemia.


Author(s):  
О.В. Першина ◽  
А.В. Пахомова ◽  
Н.Н. Ермакова ◽  
О.Ю. Рыбалкина ◽  
В.А. Крупин ◽  
...  

Цель исследования состояла в выявлении информативных клеточных маркеров сосудистых осложнений, регенерации микрососудистой сети и воспаления в венозной крови здоровых волонтеров, больных с метаболическим синдромом, сахарным диабетом 1 и 2 типа. Методы. Обследованы больные с метаболическим синдромом (МС), диабетом 2 типа без осложнений, диабетом 1 типа средней степени тяжести и здоровые волонтеры. Диагноз пациентов подтвержден общеклиническими, биохимическими, коагулометрическими и иммуноферментными методами исследования, для оценки экспрессии антигенов использовался многопараметрический цитометрический анализ. Результаты. При анализе экспрессии маркеров показано изменение числа эндотелиальных клеток, мезенхимальных стволовых клеток (МСК) и гемопоэтических стволовых клеток (ГСК) в крови в зависимости от патологии. Эндотелиальные клетки миелоидного (CD45CD14CD34CD309CD144CD31) и немиелоидного (CD45CD14CD34CD309CD144CD31) происхождения, CD309-эндотелиальные клетки и МСК (CD44CD73CD90CD105) предлагаются в качестве маркеров повреждения эндотелия при диабетической симптоматике. При этом ГСК (CD45CD34) могут выступать ценным диагностическим и прогностическим маркером воспаления. Заключение. Для подтверждения сосудистых повреждений и прогноза развития осложнений при диабете 1 и 2 типа в венозной крови пациентов целесообразно оценивать эндотелиальные прогениторные клетки (ЭПК) не костномозговой локализации (CD31CD309CD144) и костномозговой локализации (CD34CD309), и ЭПК c высоким регенеративным потенциалом (CD45CD34CD31CD144). Циркулирующие ЭПК, формирующие колонии in vitro (CD45CD34CD31), рекомендуется использовать в качестве дифференциального маркера состояния регенерации эндотелия при диабете 2 типа. The aim of this study was to identify mesenchymal stem cells (MSC), hematopoietic stem cells (HSC), mature endothelial cells, and endothelial progenitor cells (EPC) in the blood of healthy volunteers, patients with metabolic syndrome, and type 1 and 2 diabetes mellitus as new, informative cellular markers of vascular complications, endothelial regeneration, and inflammation. Methods. The diagnosis was confirmed by general clinical, biochemical, coagulometeric and ELISA studies; multi-parameter cytometric assay was used for evaluation of antigen expression. Results. Changes in the count of MSC, HSC, mature endothelial cells, and endothelial progenitor cells in blood of patients with metabolic syndrome and type 1 and 2 diabetes depended on the type of pathology. We propose using endothelial cells of myeloid (CD45CD14CD34CD309CD144CD31) and non-myeloid origin (CD45CD14CD34CD309CD144CD31), CD309-endothelial cells, and MSCs with the CD44CD73CD90CD105 phenotype as nonspecific markers of endothelial damage in presence of diabetic symptoms. Furthermore, HSCs (CD45CD34) can be used as a valuable diagnostic and prognostic marker of inflammation. Conclusions. It is relevant to evaluate EPCs of non-bone marrow localization (CD31CD309CD144) and bone marrow localization (CD34CD309) and EPCs with a high regenerative potential (CD45CD34CD31CD144) in the blood of patients with type 1 and 2 diabetes to confirm the presence of vascular damage and predict development of complications. Circulating, in vitro colony-forming EPCs (CD45CD34CD31) are recommended as a differential marker for inhibition of endothelial regeneration in type 2 diabetes.


Stem Cells ◽  
2007 ◽  
Vol 25 (7) ◽  
pp. 1761-1768 ◽  
Author(s):  
Irina A. Potapova ◽  
Glenn R. Gaudette ◽  
Peter R. Brink ◽  
Richard B. Robinson ◽  
Michael R. Rosen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document