scholarly journals Enzymatic Production of Bio-Diesel from Waste Cooking Oil Using Lipase

2008 ◽  
Vol 2 (1) ◽  
pp. 84-88 ◽  
Author(s):  
Sulaiman Al-Zuhair

The applications of lipase immobilized on ceramic beads and entrapped in sol-gel matrix, in the production of bio-diesel from waste cooking oil, are compared to that of free lipase. Experimental determination of the effect of molar equivalent of methanol, to moles of ester bond in the triglyceride, on the rate of the enzymatic trans-esterification was experimentally determined. It was found that for the same weight of lipase used, the production of bio-diesel was much higher using lipase immobilized on ceramic beads in comparison to that using lipase entrapped in sol-gel and in free form. Substrates inhibition effect was observed in all cases, which agrees with previous results found in literature. The optimum methanol:oil molar ratio was found to be 0.87 for immobilized lipase from yeast source, C. antartica and 1.00 for free lipase from the same yeast source and immobilized lipase from bacterial source, P. cepacia. On the other hand, it was shown that biodieasel can be produced in considerable amounts, with yield reaching 40%, in absence of organic solvent using immobilized lipase, from P. cepacia, on ceramic beads. The results of this study can be used to determine the kinetics parameters of mathematical models which describe the system.

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 914 ◽  
Author(s):  
Yang ◽  
Zhang

Enzymatic production of biodiesel from waste cooking oil (WCO) could contribute to resolving the problems of energy demand and environment pollutions.In the present work, Burkholderia cepacia lipase (BCL) was activated by surfactant imprinting, and subsequently immobilized in magnetic cross-linked enzyme aggregates (mCLEAs) with hydroxyapatite coated magnetic nanoparticles (HAP-coated MNPs). The maximum hyperactivation of BCL mCLEAs was observed in the pretreatment of BCL with 0.1 mM Triton X-100. The optimized Triton-activated BCL mCLEAs was used as a highly active and robust biocatalyst for biodiesel production from WCO, exhibiting significant increase in biodiesel yield and tolerance to methanol. The results indicated that surfactant imprinting integrating mCLEAs could fix BCL in their active (open) form, experiencing a boost in activity and allowing biodiesel production performed in solvent without further addition of water. A maximal biodiesel yield of 98% was achieved under optimized conditions with molar ratio of methanol-to-WCO 7:1 in one-time addition in hexane at 40 °C. Therefore, the present study displays a versatile method for lipase immobilization and shows great practical latency in renewable biodiesel production.


2019 ◽  
Vol 8 (1) ◽  
pp. 828-836 ◽  
Author(s):  
Maria Sarno ◽  
Mariagrazia Iuliano

Abstract Biodiesel production from waste cooking oil was obtained using Thermomyces lanuginosus (TL) lipase (E.C.3.1.1.3) anchored on Fe3O4/Au nanoparticles through physical interactions. A remarkable biodiesel yield of ∼90% was obtained without any pre-treatment and at a lipase concentration of 20%, 45°C reaction temperature, 1:6 oil/methanol molar ratio, after 24 h. The immobilized enzyme showed fast kinetic (the biodiesel yield was already of 34.6% after only 3 h) and activity slightly dependent on the length of the acid chains. The effect of the Au NPs sizes was monitored, to study the role of Au conduction centres in facilitating enzymes favourable orientation. The immobilized lipase activity stays above 74% after the first 3 cycles of use. In particular, the produced biodiesel presents an ester content of 97.8% ± 0.21 and a linolenic methyl ester content of 0.53% ± 0.03, in agreement with EN14214 requirements.


2014 ◽  
Vol 660 ◽  
pp. 297-300
Author(s):  
Nor Hazwani Abdullah ◽  
Sulaiman Hassan

Waste cooking oil has always been an environment problem in food factories and one method of effect disposing this oil without effecting the environment is to convert it to fatty acid methyl ester (FAME) using small scale pilot plant. The conversion of waste cooking oil with sodium hydroxide as a catalyst in conversional process at 22kHz speed. The reaction of time, molar ratio, speed, catalyst and amount of catalyst will be effect in FAME quality. The quality of biodiesel define is total ester content using gas chromatography. Gas chromatography analysis is a one of technique for identification and quantitation of compounds in a biodiesel sample. From biodiesel sample can identification of contaminants and fatty acid methyl ester. In this research biodiesel sample were analyses using a gas chromatography-flame ionization detector ( Perkin Elmer GC Model Clarus 500) equipped with a DB-5 HT capillary column ( 0.53mm x 5 m) J&W Scientific. The analytic conditions for ester content were as follow by: column temperature used 2100C, temperature flame ionization detector (FID) of 2500C, pressure of 80kPa, flow carrier gas of 1ml/min, temperature injector of 2500C, split flow rate of 50ml/min, time for analysis 20 minute and volume injected of 1 μl. The ester content (C), expresses as a mass fraction in present using formula (EN 14103, 2003a) calculation. Conversion of triglyceride (TG) to FAME using conversional process obtained 96.54 % w.t with methanol to oil molar ratio 6:1, 1%w.t acid sulphuric and 1% w.t sodium hydroxide catalyst.


2014 ◽  
Vol 699 ◽  
pp. 552-557 ◽  
Author(s):  
Norzita Ngadi ◽  
Lai Nyuk Ma ◽  
Hajar Alias ◽  
Anwar Johari ◽  
Roshanida Abd Rahman ◽  
...  

In this study, production of biodiesel from waste cooking oil (WCO) was carried out via ultrasonic-assisted transesterification method. Calcium oxide (CaO) was used as a catalyst. The effects of methanol to oil molar ratio, reaction temperature and the catalyst amount towards the percentage conversion of oil to biodiesel were investigated. The biodiesel produced was analyzed using GC-FID method. The results obtained showed that 82 % of oil was successfully converted into biodiesel. This indicates that the used oil (WCO) has the potential to be the future source of biodiesel. Catalyst concentration of 3 w/w%, methanol to oil molar ratio of 15:1 and temperature of 65°C are the best condition for the conversion of oil to biodiesel. The result obtained was found out that, methanol to oil molar ratio and catalyst amount has given significant effect on the conversion of oil. However, temperature ranged from (35 to 75) °C apparently, showed no significant effect on percentage conversion of oil.


2013 ◽  
Vol 14 (3) ◽  
pp. 219 ◽  
Author(s):  
Dwi Kartika ◽  
Senny Widyaningsih

Transesterification of waste cooking oil into biodiesel using KOH catalyst with and without esterification process usingactivated natural zeolite (ZAH) catalyst has been carried out. Activation of the zeolite was done by refluxing with HCl 6Mfor 30 min, followed calcining and oxydized at 500oC for 2 hours, consecutively. The transesterification without esterificationprocess were done using KOH catalyst 1% (w/w) from oil and methanol weight and oil/methanol molar ratio 1:6 at 60oC. Theesterification reaction was also done using ZAH catalyst then continued by transesterification using KOH catalyst inmethanol media. In order to study the effect of ZAH catalyst concentration at constant temperature, the catalysts werevaried, i.e. 0, 1, 2, and 3% (w/w). To investigate the effect of temperature, the experiments were done at various temperaturefrom 30, 45, 60, and 70oC at constant catalyst concentration. The conversion of biodiesel was determined by 1H-NMRspectrometer and physical properties of biodiesel were determined using ASTM standard methods. The results showedthat the transesterification using KOH catalyst without esterification produced biodiesel conversion of 53.29%. The optimumcondition of biodiesel synthesis via esterification process were reached at 60oC and concentration of ZAH catalyst of2% (w/w), that could give biodiesel conversion = 100.00%. The physical properties were conformed with biodiesel ASTM2003b and Directorate General of Oil and Gas 2006 specification.


Teknomekanik ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 14-21
Author(s):  
Sri Rizki Putri Primandari ◽  
Andril Arafat ◽  
Harumi Veny

Waste cooking oil has high Free Fatty Acid (FFA). It affected on decreasing a biodiesel production. FFA reduction is one of important processes in biodiesel production from waste cooking oil. Thus, this study aimed to examine the optimum condition in FFA reduction. The process is assisted by using ultrasonic irradiation on acid esterification. Variables of the process are acid concentration, molar ratio of methanol and oil, and irradiation time. Meanwhile temperature irradiation on 45oC is a control variable. Process optimization is conducted by Response Surface Methodology (RSM) with Central Composite Design (CCD). The optimum conditions of response were 7.22:1 (methanol to oil molar ratio), 0.92% wt H2SO4, 26.04 minutes (irradiation time), and 45oC (irradiation temperature). Ultrasonic system reduced FFA significantly compared to conventional method.


2021 ◽  
pp. 20-27
Author(s):  
Ngee Sing Chong ◽  
Francis Uchenna Okejiri ◽  
Saidi Abdulramoni ◽  
Shruthi Perna ◽  
Beng Guat Ooi

Due to the high cost of feedstock and catalyst in biodiesel production, the viability of the biodiesel industry has been dependent on government subsidies or tax incentives. In order to reduce the cost of production, food wastes including eggshells and oyster shells have been used to prepare calcium oxide (CaO) catalysts for the transesterification reaction of biodiesel synthesis. The shells were calcined at 1000 °C for 4 hours to obtain CaO powders which were investigated as catalysts for the transesterification of waste cooking oil. The catalysts were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and X-ray fluorescence (XRF) spectroscopy. Reaction parameters such as methanol-to-oil molar ratio, CaO catalyst concentration, and reaction time were evaluated and optimized for the percentage conversion of cooking oil to biodiesel esters. The oyster-based CaO showed better catalytic activity when compared to the eggshell-based CaO under the same set of reaction conditions.


2011 ◽  
Vol 8 (2) ◽  
pp. 896-902
Author(s):  
Seniwati Dali ◽  
A. B. D. Rauf Patong ◽  
M. Noor Jalaluddin ◽  
Pirman ◽  
Baharuddin Hamzah

Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase fromAspergillus oryzae. Lipase was partially purified from the culture supernatant ofAspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum temperature, thermal stability and reusability were carried out. The results showed that free lipase had optimum pH 8,2 and optimum temperature 35 °C while the immobilized lipase had optimum 8,2 and optimum temperature 45 °C. The thermal stability of the immobilized lipase, relative to that of the free lipase, was markedly increased. The immobilized lipase can be reused for at least six times.


2016 ◽  
Vol 27 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Baskar Thangaraj ◽  
Zhaohua Jia ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Abstract Lipase-catalyzed biodiesel production is being the object of extensive research due to the demerits of chemical based catalytic system. Lipase immobilized on Fe3O4 magnetic nanoparticles has the integrated advantages of traditional immobilized lipase and free lipase for its rather fast reaction rate and easy separation. It has been demonstrated that free lipase NS81006 has potential in catalyzing the alcoholysis of renewable oils for biodiesel preparation. In this study, Fe3O4 magnetic nanoparticles functionalized with organosilane compounds like (3-aminopropyl)triethyloxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane) MPTMS were used as carriers for lipase immobilization. Lipase NS81006 was covalently bound to the organosilane-functionalized magnetic nanoparticles by using glutaraldehyde cross-linking reagent. A biodiesel yield of 89% and 81% could be achieved by lipase immobilized on APTES-Fe3O4 and MPTMS-Fe3O4 magnetic nanoparticles respectively under optimized conditions of oil to methanol molar ratio 1:3 with three step addition of methanol, reaction temperature 45°C and reaction time duration 12 h. The lipases immobilized on magnetic nanoparticles could be recovered easily by external magnetic field for further use.


Sign in / Sign up

Export Citation Format

Share Document