Battery Losses In a MMC for BEVS Application

2018 ◽  
Vol 12 (1) ◽  
pp. 98-109 ◽  
Author(s):  
Adolfo Dannier ◽  
Gianluca Brando ◽  
Ivan Spina ◽  
Diego Iannuzzi

Objective:This paper analyses the Modular Multilevel Converter (MMC) topology, where each individual Sub Module (SM), in half bridge configuration, is directly fed by an elementary electrochemical cell.Methods:The aim is to investigate how the reference voltages influence the cells currents waveforms, determining how the active powers and the losses are distributed among the cells. Considering a 2-level Voltage Source Inverter (VSI) topology working in the same conditions, the ratio between the MMC total cells losses and VSI total cells losses is calculated. After showing the system architecture and mathematical model, the cells current waveform investigation is presented and detailed both for triangular and sinusoidal voltage reference waveform.Results:Finally, the results are critically discussed with particular focus on the comparison between the MMC and the VSI topologies.

Author(s):  
Chuen Ling Toh ◽  
P. C. Ooi

<p>A recuperating converter is highly demanded in traction power substation to deliver the braking energy generated by a traction vehicle. Conventional voltage source inverter had been implemented in the traction power station. However, large ac line filters must be installed to improve the quality of ac voltages and currents. This paper proposes to install a nine-level Modular Multilevel Converter (MMC) as a recuperating converter. The main aim is to eliminate the need of ac line filters while producing good quality of ac voltage and current waveforms. The MMC is designed and modelled using MATLAB/Simulink Simulation tool. A centralized control of balancing all the sub-module capacitor voltage level is proposed with Third Harmonic Voltage Injection Level Shifted Pulse Width Modulation (THVI-LSPWM) technique. The simulation results prove that with the application of MMC, good quality of ac voltages and currents are being produced. The Total Harmonic Distortion indexes are found less than 3.5 % without using any ac line filters in the system. In addition, the classic DC link capacitance has also being eliminated. </p>


Author(s):  
Ramya G ◽  
Ramaprabha R

Modular multilevel converters (MMC) are an emerging voltage source converter topology suitable for many applications. Due to abundant utilization of HVDC power transmission, the modular multilevel converter has become popular converter type to be used in high voltage applications. Other applications include interfacing renewable energy power sources to the grid and motor drives. Modular multilevel converters are beneficial for high voltage and high power motor drives because of the properties of this converter topology, such as, low distortion, high efficiency, etc. For the past few years significant research has been carried out to address the technical challenges associated with operation and voltage balancing of MMC. In this paper, a detailed technical review on the control strategies is presented for ready reference.


2014 ◽  
Vol 1055 ◽  
pp. 157-160
Author(s):  
Ji Min Jing ◽  
Jing Ze Wang ◽  
Yan Chao Ji

The modular multilevel converter (MMC) does not need clamping devices and multiple independent DC voltage source and has a modular structure which is easy to be extended to any level, share a DC side, easy to direct back to back four-quadrant operation and attracts widespread attention. Due to the use of sub-module MMC suspended on the DC side capacitor voltage divider provides synthetic AC output voltage required voltage level and therefore it is essential to the stable operation of the sub-module capacitor voltage balance of the MMC. In this paper, the factors affecting the MMC sub-module capacitor voltage balancing has been carried out a detailed analysis and this paper focuses on the nominal frequency erupted module capacitor voltage control strategies and the average low frequency sub-module capacitor voltage ripple suppression strategies.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1363
Author(s):  
Harith R. Wickramasinghe ◽  
Pingyang Sun ◽  
Georgios Konstantinou

This paper demonstrates the interoperability of an emerging alternate arm converter (AAC) with the state-of-the-art modular multilevel converter (MMC) in high-voltage direct current (HVDC) systems based on a hybrid VSC-HVDC system. The paper also showcases the parameter derivation of the hybrid HVDC system and its detailed control structure. The study provides preliminary steps towards detailed analysis of AAC interoperability in complex hybrid dc grid configurations. A detailed set of results based on the 800 MVA hybrid voltage source converter (VSC)-HVDC system showcases the interoperability performance of the AAC under different operating scenarios and verifies its associated control functions.


Author(s):  
Araitz Iturregi ◽  
Agurtzane Etxegarai ◽  
D. Marene Larruskain ◽  
Pablo Eguia ◽  
Oihane Abarrategui

Goi-tentsioko korronte zuzeneko (ingelesez, High Voltage Direct Current HVDC) garraio-sistemak gero eta garrantzitsuagoak dira sistema elektrikoan, onura ekonomiko eta teknikoak direla eta. Hala ere, akatsen bat gertatzen denean, korrontea eteteak oraindik ere erronka izaten jarraitzen du HVDC sareetan. Desiragarriak ez diren korronteak eteteko, korronte zuzeneko etengailuak erabil daitezke, baina horien gaitasuna mugatua da. Egoera hala izanik, akats-korronteen mugagailuak (ingelesez, Fault Current Limiter FCL) dira proposamenik egokiena akats-korronteak maneiagarriagoak diren balioetara txikitzeko; hartara, sistema elektrikoaren garraio-ahalmena handitu daiteke, ekipamendua aldatu beharrik gabe. Sarean aldez aurretik legokeen ekipamendua gai izango litzateke korronte berriak kudeatzeko eta sistema era eraginkorrean babesteko FCLen erabilpenaz. Artikulu honetan, FCL tresnen ezaugarri orokorrak eta sailkapena aurkezten dira. Ondoren, egoera solidoko FCLa erabili da maila anizkoitzeko bihurgailudun (ingelesez, Modular Multilevel Converter MMC) VSC-HVDC (ingelesez, Voltage Source Converter) sistema batean, eta horren jokaera azaltzen da simulazio bidez.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Fei Chang ◽  
Zhongping Yang ◽  
Yi Wang ◽  
Fei Lin ◽  
Shihui Liu

The modular multilevel converter (MMC) is an emerging voltage source converter topology suitable for multiterminal high voltage direct current transmission based on modular multilevel converter (MMC-MTDC). This paper presents fault characteristics of MMC-MTDC including submodule fault, DC line fault, and fault ride-through of wind farm integration. Meanwhile, the corresponding protection strategies are proposed. The correctness and effectiveness of the control strategies are verified by establishing a three-terminal MMC-MTDC system under the PSCAD/EMTDC electromagnetic transient simulation environment.


Sign in / Sign up

Export Citation Format

Share Document