scholarly journals Estimation of the Active Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered

2011 ◽  
Vol 5 (1) ◽  
pp. 9-16 ◽  
Author(s):  
W.L. Yu
2012 ◽  
Vol 170-173 ◽  
pp. 755-761 ◽  
Author(s):  
Wen Biao Liang ◽  
Jun Hai Zhao ◽  
Yan Li ◽  
Chang Guang Zhang ◽  
Su Wang

Based on the unified solution of shear strength in terms of double stress state variables for unsaturated soils, whilst considering the effect of the intermediate principal stress rationally, the unified solution of Coulomb’s active earth pressure for unsaturated soils without cracks is developed. Comparability of the solution is analyzed and influencing characteristic of each factor is obtained. The research result indicates that: the intermediate principal stress and matric suction have obvious impacts on Coulomb’s active earth pressure for unsaturated soils; Coulomb’s active earth pressure has been decreasing until zero with the increase of unified strength theory parameter and matric suction; Coulomb’s active earth pressure increases with the increase of grading angle of retaining wall and slop angle of backfill, but decreases with the increase of matric suction, effective internal friction angle and matric suction angle, while external friction angle has no obvious influence. The proposed unified solution of Coulomb’s active earth pressure enjoys a wider application, and unified solution of Rankine’s active earth pressure is just the special case. The results are of great significance to soil pressure determination such as slope and foundation pit, and to retaining structures design.


2021 ◽  
Vol 12 (1) ◽  
pp. 169
Author(s):  
Hui Liu ◽  
Dezhi Kong ◽  
Wensong Gan ◽  
Bingjie Wang

The traditional method for seismic earth pressure calculation has certain limitations for retaining structures under complex conditions. For example, when the soil width is small, the results obtained by the traditional method will be much larger. Therefore, this paper assumes that the soil slip surface is a logarithmic spiral. Based on the plane strain unified strength theory formula, while also considering the soil arching effects and tension cracks, the analytical solutions of the lateral earth pressure coefficient and the active earth pressure under the earthquake action were deduced. The mechanism and distribution of seismic active earth pressure with limited width were discussed in terms of some relevant parameters. The results indicated that the seismic active earth pressure presented a “convex” nonlinear distribution along the retaining structure. As the contribution of the intermediate principal stress increased, the strength limit of the material was effectively utilized, and the earth pressure was reduced by 22.96%. The resultant force increased as the horizontal seismic coefficient increased. However, this effect was no longer evident when the wall–soil friction angle was close to the internal friction angle. The resultant force action point increased with the wall–soil friction angle, and it should be noted that ha>H/3 was true when δ/φ0>0.55. Finally, by drawing a comparison with previous studies, we verified that the method proposed in this paper is reasonable and can provide a new idea for subsequent 3D seismic earth pressure research.


2015 ◽  
Vol 1089 ◽  
pp. 286-291
Author(s):  
Chao Tian ◽  
Yong Gang Li ◽  
Zhi Xiong Zhang

For the retaining wall in translation, in this paper the writers present the minor principal stresses trajectory which named minor principal stress arches. By discussing the results of the various arch curves in arching effect with different displacements of retaining wall which include the arch curves in ultimate model of soil and the arch curves in none limit state of soil. It gets the soil arch curve change rule under different state of the displacements, different friction angles and different height: the arch curve turn gentle when the displacements increase.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Weidong Hu ◽  
Kangxing Liu ◽  
Xinnian Zhu ◽  
Xiaolong Tong ◽  
Xiyu Zhou

The horizontal differential layer element method was used to study the active earth pressure of the finite-width soil formed by the rigid retaining wall for the embankment or adjacent foundation pits. The cohesionless soil was taken as the research object, and the soil arch theory was introduced based on the translation mode of rigid retaining wall and the linear sliding fracture surface. The minor principal stress line was assumed as circular, considering the deflected principal stress as soil arching effect. The shear stress between level soil layers in the failure wedge was calculated, and the differential level layer method was modified. Then, the theoretical formula of the active earth pressure, the resultant earth pressure, and the point of application of resultant earth pressure were obtained using this revised method. The predictions by the proposed formula were compared with the existing methods combined with the cases. It is shown that the resultant finite pressure increases gradually and approaches to Coulomb active earth pressure values when the soil is infinite, with the increase of the ratios of the backfill width to height. Moreover, the horizontal pressure for limited soils is distributed nonlinearly along the wall height. Considering the shear stress between level soil layers and the soil arching effect, the position of application point of the resultant active earth pressure by the proposed formulation is higher than that of Coulomb’s solution. The wall is rougher, and the resultant pressure will be smaller. The application point distance from the bottom of the wall will increase. Finally, an experiment was conducted to verify the distribution of the active earth pressure for finite soil against rigid retaining wall, and the research results agree well with those of the experimented observations.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hengli Wang ◽  
Zhengsheng Zou ◽  
Jian Liu ◽  
Xinyu Wang

When considering the friction and bonding force between the back of the retaining wall and the horizontal fill behind the wall, the principal stress of the soil element near the vertical back of the retaining wall is no longer vertical and horizontal but deflects to a certain extent. When the surface of the backfill becomes inclined, the principal stress of the soil behind the wall deflects in a more complicated way. In this paper, the cohesion of the soil element in the fill with an inclined surface is assumed, and the formulas for calculating the active and passive earth pressures of the retaining wall with inclined cohesive backfill are derived by rotating the principal stress of the soil element behind the wall. The proposed method is compared with the existing algorithm, and the influences of the inclination and the cohesion of the fill are analyzed. The results show that the proposed method is more universal. Both the active and passive earth pressures increase rapidly with the increase of the inclination of the fill. The active earth pressure and its horizontal component decrease with the increase of the cohesion of the fill, while the passive earth pressure and its horizontal component increase with the increase of the cohesion of the fill.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yu Zhang ◽  
Jin Liu ◽  
Te-Jia Fan ◽  
Chen-Yang Xu ◽  
Tian-Yi Meng ◽  
...  

To solve the Earth pressure problems in practical engineering, such as retaining walls and foundation pits, we derive active and passive Earth pressure formulas in accordance with the relationship between intermediate principal stress and excavation under three-dimensional stress states. The formulas are derived on the basis of the Mohr–Coulomb, spatially mobilized plane (SMP), σ 3 SMP, Lade–Duncan, axisymmetric compression- (AC-) SMP strength, and generalized Mises (Gen-Mises) criteria and then extended to clay. We also compare the calculated Earth pressure with the measured data. Results indicate that the Earth pressure considering medium principal stress contribution under a three-dimensional stress state is consistent with the actual engineering. The calculated active Earth pressure in the Mohr–Coulomb strength criterion is larger, and the passive Earth pressure is smaller than the practical one because the intermediate principal stress effect is not considered. The calculated results of the SMP, σ 3 SMP, Lade–Duncan, AC-SMP strength, and Gen-Mises criteria are close to the measured data, among which the result of the Gen-Mises criterion is closer. The Earth pressure calculated using the Lade–Duncan criterion is no longer appropriate to describe the Earth pressure under medium principal stress condition in this study. The results of this study have theoretical significance for retaining structure design under a three-dimensional stress state.


Sign in / Sign up

Export Citation Format

Share Document