scholarly journals Experimental Analyses of Mechanical Performance of CFST Column to Assembled Steel H-Beam Connections

2014 ◽  
Vol 8 (1) ◽  
pp. 270-278 ◽  
Author(s):  
Cui Chunyi ◽  
Zhao Jinfeng ◽  
Zhang Yannian ◽  
Zuo Wenxin

The mechanical performance of a new proposed type of cross-shaped connection with concrete-filled steel tubular (CFST) column and assembled steel H-beam was investigated. Cyclic loading tests on the cross-shaped connections are carried out by using MTS servo loading system. Comparative analyses are conducted based on the experimental results including hysteretic curves, skeleton curves and stiffness degradation curves as well as ductility coefficients of cyclic loading tests. Furthermore, effects of geometric parameters of ring-stiffened plate, axial compression ratio and backing plate on the deformation performance of cross-shaped connections are analyzed. The results show that the increase of width of ring plate and the shape change of ring plate from square to circle can both significantly improve the ductility and the hysteretic characteristics of connection. It is emphasized that the specimen with square ring plates is of better deformation performance but lower bearing capacity than the ones with circular ring plates. Besides, the backing plates always have positive effects on the hysteretic characteristics, ductility and energy dissipation of the CFST column connections. Conversely, the increase of axial compression ratio contributes negatively to both the bearing capacity and deformation performance of the connection specimens. It can be concluded that the presented cross-shaped connection is of good deformation performance relating to hysteretic characteristics, energy dissipation and ductility, which can provide reference towards engineering practice with potential perspective application.

2017 ◽  
Vol 11 (1) ◽  
pp. 1003-1012
Author(s):  
Chunyi Cui ◽  
Kun Meng ◽  
Yan Kong ◽  
Yannian Zhang ◽  
Wenxin Zuo

Introduction: Based on FEM program ABAQUS, three-dimensional numerical models of a fabricated connection of concrete-filled steel column to steel beam under low-reversed cyclic loading were established by considering both nonlinearity of material and geometry. Effects of stiffen ring plate, axial compression ratio and backing plate on the hysteresis curves, skeleton curves, ductility coefficient and energy dissipation coefficient were analyzed respectively. Methods: Furthermore, parametric analyses with comparison were also conducted to discuss the mechanical characteristics and damage mechanism of the fabricated connection. Results: The results show that there are clear stress concentrations near the area of bolt holes in beam flange. The increase in width of ring plate and the shape change of ring plate from square to circle can both improve the ductility and the characteristics of hysteretic behavior. Besides, the backing plates have positive effects on the hysteretic characteristics, ductility and energy dissipation of the CFST column connections. Oppositely, the increase in axial compression ratio contributes negatively to both the bearing capacity and deformation performance of the connection specimens. Conclucion: It can be concluded that the fabricated connection displays good working performance relating to hysteretic characteristics, energy dissipation and ductility, which can be hopefully applied and provide reference to engineering practice.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qingguang He ◽  
Yanxia Bai ◽  
Weike Wu ◽  
Yongfeng Du

A novel assembled self-centering variable friction (SCVF) brace is proposed which is composed of an energy dissipation system, a self-centering system, and a set of force transmission devices. The hysteretic characteristics and energy dissipation of the SCVF brace with various parameters from low-cyclic loading tests are presented. A finite element model was constructed and tested under simulated examination for comparative analysis. The results indicate that the brace shows an atypical flag-type hysteresis curve. The SCVF brace showed its stable self-centering ability and dissipation energy capacity within the permitted axial deformation under different spring and friction plates. A larger deflection of the friction plate will make the variable friction of this SCVF brace more obvious. A higher friction coefficient will make the energy dissipation capacity of the SCVF brace stronger, but the actual friction coefficient will be lower than the design value after repeated cycles. The results of the fatigue tests showed that the energy dissipation system formed by the ceramic fiber friction blocks and the friction steel plates in the SCVF brace has a certain stability. The finite element simulation results are essentially consistent with the obtained test results, which is conducive to the use of finite element software for calculation and structural analysis in actual engineering design.


2012 ◽  
Vol 204-208 ◽  
pp. 3978-3981
Author(s):  
Wen Jie Ren ◽  
Jun Sen Jia ◽  
Xiang Shang Chen

The shape memory alloys (SMAs) have received increasing interest attributed to their unique superelastic effect and the shape memory effect. The existing models of superelastic SMAs are generally complex for practical use. In this paper, cyclic loading tests of superelastic SMA wires are first performed. Based on the experiments, a simple constitutive model is set up. Simulations testify that the model can approximately describe the hysteretic characteristics of the superelastic SMA and the simulated mechanical parameters agree well with the experimental values.


2012 ◽  
Vol 256-259 ◽  
pp. 2079-2084 ◽  
Author(s):  
Tie Cheng Wang ◽  
An Gao ◽  
Hai Long Zhao

The influence of the pile type and the stirrup on the seismic performance was evaluated based on the results of reversed cyclic loading tests on the four prestressed high strength concrete (PHC) piles. It is indicated that the AB-type pile has the better seismic performance than the A-type pile from the results. The bearing capacity does not increase obviously with decreasing of the stirrup spacing and increasing of the stirrup diameter. The degradation of stiffness does not decrease significantly with decreasing of the stirrup spacing and increasing of the stirrup diameter. The energy dissipation capacity is improved with increasing of the stirrup diameter and decreasing of the stirrup spacing.


2013 ◽  
Vol 351-352 ◽  
pp. 174-178
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

With the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: when reached the ultimate strength, the strength degradation and stiffness degradation of joints are slowly and the ductility is also good, the energy dissipation capacity of joints is much better.


2019 ◽  
Vol 25 (60) ◽  
pp. 655-659
Author(s):  
Shuzo HIROISHI ◽  
Akira OKADA ◽  
Naoya MIYASATO ◽  
Noburu NAKAMURA ◽  
Kenichi MAMURO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document