Research on the Joint of Concrete-Filled Steel Tubular Column and Steel Beam

2013 ◽  
Vol 351-352 ◽  
pp. 174-178
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

With the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: when reached the ultimate strength, the strength degradation and stiffness degradation of joints are slowly and the ductility is also good, the energy dissipation capacity of joints is much better.

2012 ◽  
Vol 204-208 ◽  
pp. 2528-2532
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

Joints are the forces cross points of members, and the bearing modes are more complex than other members, especially under earthquake action, so the rationality of joints are directly related to the safe reliability of structure. By the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: the energy dissipation capacity of joints is much better, the degradation of strength and stiffness are slowly when reached the ultimate strength, and the ductility is also good.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040004
Author(s):  
Li Sun ◽  
Zeyu Yang ◽  
Qiao Jin ◽  
Weidong Yan

Traditional reinforced concrete columns have demonstrated poor seismic performance especially in corrosive environment as the reinforcement bars experience severe corrosion under such conditions. To overcome the problem of steel corrosion, glass fiber-reinforced polymer (GFRP) reinforced concrete columns have gained significant attention in recent years. However, the seismic performance of GFRP reinforced concrete column is not well understood yet. One of the main challenges associated with the use of GFRP bars is its brittle behavior. Therefore, it is necessary to investigate the mechanical properties and failure modes of GFRP reinforced concrete structures under seismic action. In this research, the seismic behavior of GFRP reinforced concrete columns and conventional columns under different axial compression ratios are analyzed by low-cycle repeated pseudo-static loading tests. As a result, the deformation and the seismic energy dissipation capacity of GFRP reinforced concrete columns are investigated and discussed. Furthermore, the failure mechanism of GFRP bar structure is studied to provide the basis for improving the seismic design method of GFRP reinforced concrete structure and modifying the code for seismic design. In addition, the influence of axial compression ratio on the seismic behavior of full GFRP reinforced concrete columns is investigated. The results of this experiment demonstrate that with the increase of axial compression ratio, the ultimate bearing capacity of GFRP reinforced concrete columns increases, while the deformation and the cumulative energy dissipation capacity decrease.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhen-chao Teng ◽  
Tian-jia Zhao ◽  
Yu Liu

In traditional building construction, the structural columns restrict the design of the buildings and the layout of furniture, so the use of specially shaped columns came into being. The finite element model of a reinforced concrete framework using specially shaped columns was established by using the ABAQUS software. The effects of concrete strength, reinforcement ratio, and axial compression ratio on the seismic performance of the building incorporating such columns were studied. The numerical analysis was performed for a ten-frame structure with specially shaped columns under low reversed cyclic loading. The load-displacement curve, peak load, ductility coefficient, energy dissipation capacity, and stiffness degradation curve of the specially shaped column frame were obtained using the ABAQUS finite element software. The following three results were obtained from the investigation: First, when the strength of concrete in the specially shaped column frame structure was increased, the peak load increased, while the ductility and energy dissipation capacity weakened, which accelerated the stiffness degradation of the structure. Second, when the reinforcement ratio was increased in the specially shaped column frame structure, the peak load increased and the ductility and energy dissipation capacity also increased, which increased the stiffness of the structure. Third, when the axial compression ratio was increased in the structure, the peak load increased, while ductility and energy dissipation capacity reduced, which accelerated the degradation of structural stiffness.


2013 ◽  
Vol 351-352 ◽  
pp. 213-218
Author(s):  
Jun Peng ◽  
Dong Xiu Zhang ◽  
Jian Kang Zhang

By testing the seismic performance of the beams and columns of three SRHC with different axial compression ratios, the paper reveals the influence pattern of the nodes’ stress transfer and distribution, cracks’ appearance and development, member deformation, destruction pattern and mechanism, energy dissipation capacity etc., in SRHC with different axial compression ratios. The test shows that the increase of axial compression ratio postpones the appearance of the diagonal cracks in the nodes area, and slows down moderately the speed of development of the diagonal cracks, and improves the nodes’ energy dissipation capacity and ductility etc. this article studies its crack resistance and bearing capacity only. The purpose of this test is, through the low cyclic loading test of the nodes in the beams and columns of three SRHC with different axial compression ratios, to investigate the axial compression ratio’ influence on the cracks’ appearance, development, destruction pattern and deformation characteristics in the nodes; to analyze of the factors influencing the load-carrying capability; to validate the calculation methods proposed by related studies, which is little studied by foreign countries. This paper, based on the analysis of axial compression ratio test, further validates and improves the theory and methods proposed in the literature.


2014 ◽  
Vol 501-504 ◽  
pp. 1580-1586
Author(s):  
Jian Yang Xue ◽  
Jian Peng Lin ◽  
Hui Ma

The pseudo-static tests were carried out on seven steel reinforced recycled concrete columns. The main parameters of specimens were recycled aggregate replacement ratio, axial compression ratio and volumetric stirrup ratio. The results indicate that the incorporation of recycled aggregate doesnt reduce the horizontal bearing capacity, ductility and the energy dissipation capacity of specimens and has little effect on seismic performance. The seismic performance of steel reinforced recycled concrete column decreases significantly in the high axial compression ratio. The ductility, horizontal bearing capacity and the energy dissipation capacity of the steel reinforced recycled concrete column increase with a rise in the volumetric stirrup ratio. This study provides a reference on the application of the steel reinforced recycled concrete column.


2012 ◽  
Vol 166-169 ◽  
pp. 1152-1156
Author(s):  
Pei Zhen Xu ◽  
Xia Wu ◽  
Na Zhang ◽  
Hou Jian Zhang ◽  
Huan Sen Xing

The hysteretic behaviors of concrete filled steel tube columns under low cyclic loads were analyzed for verification the accumulated energy dissipation performance. The accumulated ductility coefficient influencing factors, such as slenderness ratio, axial compression ratio and sectional steel ratio, were analyzed. It is indicated that these columns have a better energy dissipation capacity. The energy dissipation capacity decreases with the axial compression ratio increasing, but the influence of slenderness ratio and steel ratio to accumulated ductility coefficient is not clear, this is because the influence of difference loading system.


2014 ◽  
Vol 08 (04) ◽  
pp. 1450012
Author(s):  
Haozhi Tan ◽  
Liang Huang ◽  
Libo Yan ◽  
Hongwei Yi ◽  
Xin Tian

Bracing is one of the most effective systems which is widely used to improve the seismic performance of reinforced concrete (RC) plane frames. However, studies on the use of bracing in newly constructed RC space frame (RCSF) are rare. This paper presents the experimental results of two 1/4-scale, two-story, and three-bay RCSFs under cyclic loading. A RCSF without brace was designed and constructed as a control system, which was termed as "RCSF". Another one was constructed and strengthened with steel X-braces, which was termed as "SBRCSF". The seismic performance of RCSF was compared with those of SBRCSF. The test results show that compared with the RCSF, the seismic performance of the SBRCSF was improved significantly in terms of hysteresis loop, strength, stiffness degradation, and energy dissipation capacity. In addition, unlike the inter-story failure mechanism of the RCSF, the SBRCSF specimen exhibited an overall failure mechanism, which is significant for the seismic design of RCSFs. Moreover, the tested SBRCSF could bear loads in a manner similar to that of untested RCSF after the failure of the steel braces, thereby revealing the redundancy of SBRCSF and showing the advantageous of the use of steel braces for space frame.


2011 ◽  
Vol 243-249 ◽  
pp. 662-665 ◽  
Author(s):  
Zhen Yu Wu ◽  
Xiao Hui He ◽  
Yao Chun Zhang

The hysteretic performances of steel beam-to-column connections using martensite shape memory alloy (SMA) rods were studied by the experiments. Before the connection test, the material test of Ni-Ti SMA was carried out for the verification of shape memory effect. Meanwhile, the other two type connections (ANGLE and A3) were also tested for comparison. The results showed that connections with SMA rods have excellent energy dissipation capacity, and no strength degradation even subjected to relative rotation of 0.04 rad. It was found that connections with SMA rods possess the higher stiffness and strength than the ANGLE connection, and better ductility than the A3 connection by comparing their hysteretic curves. Large residual deformations of SMA rods can be recovered by application of heat. Retests were performed using heat-straightened rods in the connections, and nearly identical hysteretic behavior was observed as in the case of initial testing.


2011 ◽  
Vol 368-373 ◽  
pp. 183-188 ◽  
Author(s):  
Guo Feng Du ◽  
Chao Ma ◽  
Cheng Xiang Xu

In order to understand the mechanical performance and related tectonic design requirements of the concrete-filled steel tubular joints with special-shaped cross-section , three T-shaped concrete filled steel tubular column joints with exterior diaphragms were manufactured and experimented under cyclic loading. By changing the axial compression ratio of the columns and increasing the width and overhanging length of the stiffening ring, the hysteretic performance and working mechanism of such joints under cyclic loading were studied. The results show that by increasing the width and overhanging length of the stiffening ring, the hysteretic performance, ductility and energy dissipation capacity of joints were obviously improved.


2008 ◽  
Vol 400-402 ◽  
pp. 701-706
Author(s):  
Hong Fan ◽  
Q.S. Li ◽  
Li Hua Xu

This paper introduces a new connection-inner and through-type diaphragm, which is recommended by Technical Specification for Structures with Concrete-filled Rectangular Steel Tube Members. It studies some factors including the additional plates installed on both sides of the flanges, the width-to-thickness ratio of the column and the length of the through diaphragm which have an influence to the seismic resistance behaviors of connection through cyclic test. The results show the hysteresis curves attained in the experiment are full and the rigidity deterioration is not obvious. The connection models have a good energy dissipation capacity. Meanwhile the stress distributing can be ameliorated and the ductility of the connections can also be improved through welding the additional plates to both sides of the flanges.


Sign in / Sign up

Export Citation Format

Share Document