scholarly journals Cost-Effectiveness of Image-Guided Spine Surgery

2010 ◽  
Vol 4 (1) ◽  
pp. 228-233 ◽  
Author(s):  
Robert Green Watkins ◽  
Akash Gupta ◽  
Robert Green Watkins

Objective: To determine if image-guided spine surgery is cost effective. Methods: A prospective case series of the first 100 patients undergoing thoracolumbar pedicle screw instrumentation under image-guidance was compared to a retrospective control group of the last 100 patients who underwent screw placement prior to the use of image-guidance. The image-guidance system was NaviVision (Vector Vision-BrainLAB) and Arcadis Orbic (Siemens). Results: The rate of revision surgery was reduced from 3% to 0% with the use of image guidance (p=0.08). The cost savings of image guidance for the placement of pedicle screws was $71,286 per 100 cases. Time required for pedicle screw placement with image guidance was 20 minutes for 2 screws, 29 minutes for 4 screws, 38 minutes for 6 screws, and 50 min for 8 screws. Cost savings for the time required for placement of pedicle screws with image guidance can be estimated by subtracting the time required with currently used techniques without image guidance from the above averages, then multiplying by $93 per minute. The approximate costs of the navigation system is $475,000 ( $225,000 for Vector Vision-BrainLAB and $250,000 for Arcadis Orbic-Siemens). Conclusion: Image guidance for the placement of pedicle screws may be cost effective in spine practices with heavy volume, that perform surgery in difficult cases, and that require long surgical times for the placement of pedicle screws.

2001 ◽  
Vol 10 (2) ◽  
pp. 1-5 ◽  
Author(s):  
Kee D. Kim ◽  
J. Patrick Johnson ◽  
Jesse D. Babbitz

Object Thoracic pedicle screw fixation is effective and reliable in providing short-segment stabilization. Although the procedure is becoming more widely used, accurate insertion of the screws is difficult due to the small dimensions of thoracic pedicles, and the associated risk is high due to the proximity of the spinal cord. In previous studies authors have shown the accuracy of image-guided lumbar pedicle screw placement, but there have been no reported investigations into the accuracy of image-guided thoracic pedicle screw placement. The authors report their experience with such an investigation. Methods To evaluate the accuracy of image-guided thoracic pedicle screw placement in vitro and in vivo, thoracic pedicle screws were placed with an image-guidance system in five human cadavers and 10 patients. In cadavers, the accuracy of screw placement was assessed by postoperative computerized tomography and visual inspection and in patients by postoperative imaging studies. Of the 120 pedicle screws placed in five cadavers pedicle violation occurred in 23 cases (19.2%); there was one pedicle violation (4.2%) in each of the last two cadavers. Of the 45 pedicle screws placed in 10 patients, pedicle violations occurred in three (6.7%). Conclusions In comparison with historical controls, the accuracy of thoracic pedicle screw placement is improved with the use of an image-guidance system. It allows the surgeon to visualize the thoracic pedicle and the surrounding structures that are normally out of the surgical field of view. The surgeon, however, must be aware of the limitations of an image-guidance system and have a sound basic knowledge of spinal anatomy to avoid causing serious complications.


2013 ◽  
Vol 18 (5) ◽  
pp. 479-483 ◽  
Author(s):  
Eric W. Nottmeier ◽  
Stephen M. Pirris

Object Transvertebral pedicle screws have successfully been used in the treatment of high-grade L5–S1 spondylolisthesis. An advantage of transvertebral pedicle screws is the purchase of multiple cortical layers across 2 vertebrae, thereby increasing the stability of the construct. At the lumbosacral junction, transvertebral pedicle screws have been shown to be biomechanically superior to pedicle screws placed in the standard fashion. The use of transvertebral pedicle screws at spinal levels other than L5–S1 has not been reported in the literature. The authors describe their technique of transvertebral pedicle screw placement in the thoracic spine using 3D image guidance. Methods Twelve patients undergoing cervicothoracic or thoracolumbar fusion had 41 thoracic transvertebral pedicle screws placed across 26 spinal levels using this technique. Indications for placement of thoracic transvertebral pedicle screws in earlier cases included osteoporosis and pedicle screw salvage. However, in subsequent cases screws were placed in patients undergoing multilevel thoracolumbar fusion without osteoporosis, particularly near the top of the construct. Image guidance in this study was accomplished using the Medtronic StealthStation S7 image guidance system used in conjunction with the O-arm. All patients were slated to undergo postoperative CT scanning at approximately 4–6 months for fusion assessment, which also allowed for grading of the transvertebral pedicle screws. Results No thoracic transvertebral pedicle screw placed in this study had to be replaced or repositioned after intraoperative review of the cone beam CT scans. Review of the postoperative CT scans revealed all transvertebral screws to be across the superior disc space with the tips in the superior vertebral body. Six pedicle screws were placed using the in-out-in technique in patients with narrow pedicles, leaving 35 screws that underwent breach analysis. No pedicle breach was noted in 34 of 35 screws. A Grade 1 (< 2 mm) medial breach was noted in 1 screw without clinical consequence. Solid fusion was observed across 25 of 26 spinal levels that underwent transvertebral screw placement including 7 spinal levels located at the top of a multilevel construct. Conclusions This report describes the authors' initial in vivo experience with the 3D image-guided placement of 41 thoracic transvertebral pedicle screws. Advantages of thoracic transvertebral screws include the purchase of 2 vertebral segments across multiple cortical layers. A high fusion rate was observed across spinal levels in which transvertebral screws were placed. A formal biomechanical study is needed to assess the biomechanical advantages of this technique and is currently being planned.


2017 ◽  
Vol 42 (5) ◽  
pp. E4 ◽  
Author(s):  
Timur M. Urakov ◽  
Ken Hsuan-kan Chang ◽  
S. Shelby Burks ◽  
Michael Y. Wang

OBJECTIVESpine surgery is complex and involves various steps. Current robotic technology is mostly aimed at assisting with pedicle screw insertion. This report evaluates the feasibility of robot-assisted pedicle instrumentation in an academic environment with the involvement of residents and fellows.METHODSThe Renaissance Guidance System was used to plan and execute pedicle screw placement in open and percutaneous consecutive cases performed in the period of December 2015 to December 2016. The database was reviewed to assess the usability of the robot by neurosurgical trainees. Outcome measures included time per screw, fluoroscopy time, breached screws, and other complications. Screw placement was assessed in patients with postoperative CT studies. The speed of screw placement and fluoroscopy time were collected at the time of surgery by personnel affiliated with the robot’s manufacturer. Complication and imaging data were reviewed retrospectively.RESULTSA total of 306 pedicle screws were inserted in 30 patients with robot guidance. The average time for junior residents was 4.4 min/screw and for senior residents and fellows, 4.02 min/screw (p = 0.61). Among the residents dedicated to spine surgery, the average speed was 3.84 min/screw, while nondedicated residents took 4.5 min/screw (p = 0.41). Evaluation of breached screws revealed some of the pitfalls in using the robot.CONCLUSIONSNo significant difference regarding the speed of pedicle instrumentation was detected between the operators’ years of experience or dedication to spine surgery, although more participants are required to investigate this completely. On the other hand, there was a trend toward improved efficiency with more cases performed. To the authors’ knowledge, this is the first reported academic experience with robot-assisted spine instrumentation.


2007 ◽  
Vol 7 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Gregory P. Lekovic ◽  
Eric A. Potts ◽  
Dean G. Karahalios ◽  
Graham Hall

Object The goal of this study was to compare the accuracy of thoracic pedicle screw placement aided by two different image-guidance modalities. Methods The charts of 40 consecutive patients who had undergone stabilization of the thoracic spine between January 2003 and January 2005 were retrospectively reviewed. Three patients were excluded from the study because, on the basis of preoperative findings, small pedicle diameter precluded the use of pedicle screws. Thus, a total of 37 patients had 277 screws placed with the aid of either virtual fluoroscopy or isocentric C-arm 3D navigation. The indications for surgery included trauma, degenerative disease, and tumor, and were similar in both groups. All 37 patients underwent postoperative computed tomography scanning, and an independent reviewer graded all screws based on axial, sagittal, and coronal projections for a full determination of the placement of the screw in the pedicle. Results The rate of unintended perforations was found to depend on pedicle diameter (p < 0.0001). There were no statistical differences between groups with regard to rate or grade of cortical perforations. Overall, the rate and grade of perforations was low, and there were no neurological or vascular complications. Conclusions The authors have shown that either image-guidance system may be used with a high degree of accuracy and safety. Because both systems were found to be comparably safe and accurate, the choice of image-guidance modality may be determined by the level of surgeon comfort and/or availability of the system.


2018 ◽  
Vol 28 (4) ◽  
pp. 357-363 ◽  
Author(s):  
Gregory M. Malham ◽  
Rhiannon M. Parker

OBJECTIVEImage guidance for spine surgery has been reported to improve the accuracy of pedicle screw placement and reduce revision rates and radiation exposure. Current navigation and robot-assisted techniques for percutaneous screws rely on bone-anchored trackers and Kirchner wires (K-wires). There is a paucity of published data regarding the placement of image-guided percutaneous screws without K-wires. A new skin-adhesive stereotactic patient tracker (SpineMask) eliminates both an invasive bone-anchored tracker and K-wires for pedicle screw placement. This study reports the authors’ early experience with the use of SpineMask for “K-wireless” placement of minimally invasive pedicle screws and makes recommendations for its potential applications in lumbar fusion.METHODSForty-five consecutive patients (involving 204 screws inserted) underwent K-wireless lumbar pedicle screw fixation with SpineMask and intraoperative neuromonitoring. Screws were inserted by percutaneous stab or Wiltse incisions. If required, decompression with or without interbody fusion was performed using mini-open midline incisions. Multimodality intraoperative neuromonitoring assessing motor and sensory responses with triggered electromyography (tEMG) was performed. Computed tomography scans were obtained 2 days postoperatively to assess screw placement and any cortical breaches. A breach was defined as any violation of a pedicle screw involving the cortical bone of the pedicle.RESULTSFourteen screws (7%) required intraoperative revision. Screws were removed and repositioned due to a tEMG response < 13 mA, tactile feedback, and 3D fluoroscopic assessment. All screws were revised using the SpineMask with the same screw placement technique. The highest proportion of revisions occurred with Wiltse incisions (4/12, 33%) as this caused the greatest degree of SpineMask deformation, followed by a mini midline incision (3/26, 12%). Percutaneous screws via a single stab incision resulted in the fewest revisions (7/166, 4%). Postoperative CT demonstrated 7 pedicle screw breaches (3%; 5 lateral, 1 medial, 1 superior), all with percutaneous stab incisions (7/166, 4%). The radiological accuracy of the SpineMask tracker was 97% (197/204 screws). No patients suffered neural injury or required postoperative screw revision.CONCLUSIONSThe noninvasive cutaneous SpineMask tracker with 3D image guidance and tEMG monitoring provided high accuracy (97%) for percutaneous pedicle screw placement via stab incisions without K-wires.


2014 ◽  
Vol 20 (2) ◽  
pp. 196-203 ◽  
Author(s):  
Alexander Mason ◽  
Renee Paulsen ◽  
Jason M. Babuska ◽  
Sharad Rajpal ◽  
Sigita Burneikiene ◽  
...  

Object Several retrospective studies have demonstrated higher accuracy rates and increased safety for navigated pedicle screw placement than for free-hand techniques; however, the accuracy differences between navigation systems has not been extensively studied. In some instances, 3D fluoroscopic navigation methods have been reported to not be more accurate than 2D navigation methods for pedicle screw placement. The authors of this study endeavored to identify if 3D fluoroscopic navigation methods resulted in a higher placement accuracy of pedicle screws. Methods A systematic analysis was conducted to examine pedicle screw insertion accuracy based on the use of 2D, 3D, and conventional fluoroscopic image guidance systems. A PubMed and MEDLINE database search was conducted to review the published literature that focused on the accuracy of pedicle screw placement using intraoperative, real-time fluoroscopic image guidance in spine fusion surgeries. The pedicle screw accuracy rates were segregated according to spinal level because each spinal region has individual anatomical and morphological variations. Descriptive statistics were used to compare the pedicle screw insertion accuracy rate differences among the navigation methods. Results A total of 30 studies were included in the analysis. The data were abstracted and analyzed for the following groups: 12 data sets that used conventional fluoroscopy, 8 data sets that used 2D fluoroscopic navigation, and 20 data sets that used 3D fluoroscopic navigation. These studies included 1973 patients in whom 9310 pedicle screws were inserted. With conventional fluoroscopy, 2532 of 3719 screws were inserted accurately (68.1% accuracy); with 2D fluoroscopic navigation, 1031 of 1223 screws were inserted accurately (84.3% accuracy); and with 3D fluoroscopic navigation, 4170 of 4368 screws were inserted accurately (95.5% accuracy). The accuracy rates when 3D was compared with 2D fluoroscopic navigation were also consistently higher throughout all individual spinal levels. Conclusions Three-dimensional fluoroscopic image guidance systems demonstrated a significantly higher pedicle screw placement accuracy than conventional fluoroscopy or 2D fluoroscopic image guidance methods.


2021 ◽  
Author(s):  
Vishal Kumar ◽  
Vishnu Baburaj ◽  
Prasoon Kumar ◽  
Sarvdeep Singh Dhatt

AbstractBackgroundPedicle screw insertion is routinely carried out in spine surgery that has traditionally been performed under fluoroscopy guidance. Robotic guidance has recently gained popularity in order to improve the accuracy of screw placement. However, it is unclear whether the use of robotics alters the accuracy of screw placement or clinical outcomes.ObjectivesThis systematic review aims to compare the results of pedicle screws inserted under fluoroscopy guidance, with those inserted under robotic guidance, in terms of both short-term radiographic outcomes, as well as long-term clinical outcomes.MethodsThis systematic review will be conducted according to the PRISMA guidelines. A literature search will be conducted on the electronic databases of PubMed, Embase, Scopus, and Ovid with a pre-determined search strategy. A manual bibliography search of included studies will also be done. Original articles in English that directly compare pedicle screw insertion under robotic guidance to those inserted under fluoroscopy guidance will be included. Data on outcomes will be extracted from included studies and analysis carried out with the help of appropriate software.


2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.


2003 ◽  
Vol 99 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Langston T. Holly ◽  
Kevin T. Foley

✓ The authors sought to evaluate the feasibility and accuracy of three-dimensional (3D) fluoroscopic guidance for percutaneous placement of thoracic and lumbar pedicle screws in three cadaveric specimens. After attaching a percutaneous dynamic reference array to the surgical anatomy, an isocentric C-arm fluoroscope was used to obtain images of the region of interest. Light-emitting diodes attached to the C-arm unit were tracked using an electrooptical camera. The image data set was transferred to the image-guided workstation, which performed an automated registration. Using the workstation display, pedicle screw trajectories were planned. An image-guided drill guide was passed through a stab incision, and this was followed by sequential image-guided pedicle drilling, tapping, and screw placement. Pedicle screws of various diameters (range 4–6.5 mm) were placed in all pedicles greater than 4 mm in diameter. Postoperatively, thin-cut computerized tomography scans were obtained to determine the accuracy of screw placement. Eighty-nine (94.7%) of 94 percutaneous screws were placed completely within the cortical pedicle margins, including all 30 lumbar screws (100%) and 59 (92%) of 64 thoracic screws. The mean diameter of all thoracic pedicles was 6 mm (range 2.9–11 mm); the mean diameter of the five pedicles in which wall violations occurred was 4.6 mm (range 4.1–6.3 mm). Two of the violations were less than 2 mm beyond the cortex; the others were between 2 and 3 mm. Coupled with an image guidance system, 3D fluoroscopy allows highly accurate spinal navigation. Results of this study suggest that this technology will facilitate the application of minimally invasive techniques to the field of spine surgery.


Sign in / Sign up

Export Citation Format

Share Document