Recent Advances on Human-Robot Interface of Wheelchair-Mounted Robotic Arm

2019 ◽  
Vol 12 (1) ◽  
pp. 45-54
Author(s):  
Mingshan Chi ◽  
Yufeng Yao ◽  
Yaxin Liu ◽  
Ming Zhong

Background: Wheelchair mounted robotic arm is a typical assistive robot, which is widely used to help the elders and the disabled to complete the activities of daily life. But limited by the restrictions of the users’ athletic ability and cognitive ability, how to flexibly manipulate such robot is still a problem in front of them. The human-computer interaction technology is the core technology of the robot. Its performance directly affects the user's acceptability, satisfaction and promotion of intelligent wheelchairs. Objective: The study aims to give a general summary of recent human-robot interface of wheelchair mounted robotic arm and introduce their respective characteristics. Methods: Based on various patents and research developments about the human-robot interface of the assistive robot at home and abroad, this paper puts forward the basic principle of designing the humanrobot interaction mode, divides the man-robot interface into two categories based on the perspective of user control robot arm, and describes in detail, the typical human-robot interface and its related characteristics contained in each classification. Results: The development trends of the human-robot interface in future are predicted, so as to provide some research reference for the related scientific researchers. Conclusion: Wheelchair mounted robotic arm has important practical significance. Further improvements are needed in the design of the human-robot interface. It can effectively improve the operation performance of the WMRA, and take full advantage of the user’s existing movement ability to meet the requirement of dominating the control process. Furthermore, these improvements in the human-robot interface will allow more and more users to accept the WMRA, manipulate the WMRA, and enjoy improvements in the quality of their life for these assistive robots.

Author(s):  
Mingshan Chi ◽  
Yaxin Liu ◽  
Yufeng Yao ◽  
Yan Liu ◽  
Shouqiang Li ◽  
...  

AbstractTo offer simple and convenient assistance for the elderly and disabled, researchers focus on programming by demonstration approach to improve the intelligence and adaptability of wheelchair mounted robotic arm assistive robot. But how to easily and quickly obtain the demonstration information is still an urgent problem to be solved. Based on the systematic analysis of the daily living tasks in need of robot assistance, this paper proposes the key-point-based programming by demonstration recording approach to quickly obtain the demonstration information and develops a specified demonstration interface to simplify the operation process. A corresponding evaluation approach is also proposed from the demonstration trajectories and demonstration process two aspects. Additionally, tasks of “holding water glass task”, “eating task”, and “opening door task” are carried out and experimental results, as well as comparative evaluations confirm the validity of the proposed approach with high efficiency. This study can not only offer a convenient and feasible way to obtain the demonstration information of daily living tasks, but also lay a good foundation for the assistive robot to learn relative motion skills, especially for the demonstrated dexterous manipulation skills, and semi-autonomously accomplish complex, multi-step tasks following the user’s instructions in the daily home environment.


Author(s):  
Zhaohui Zheng ◽  
Yong Ma ◽  
Hong Zheng ◽  
Yu Gu ◽  
Mingyu Lin

Purpose The welding areas of the workpiece must be consistent with high precision to ensure the welding success during the welding of automobile parts. The purpose of this paper is to design an automatic high-precision locating and grasping system for robotic arm guided by 2D monocular vision to meet the requirements of automatic operation and high-precision welding. Design/methodology/approach A nonlinear multi-parallel surface calibration method based on adaptive k-segment master curve algorithm is proposed, which improves the efficiency of the traditional single camera calibration algorithm and accuracy of calibration. At the same time, the multi-dimension feature of target based on k-mean clustering constraint is proposed to improve the robustness and precision of registration. Findings A method of automatic locating and grasping based on 2D monocular vision is provided for robot arm, which includes camera calibration method and target locating method. Practical implications The system has been integrated into the welding robot of an automobile company in China. Originality/value A method of automatic locating and grasping based on 2D monocular vision is proposed, which makes the robot arm have automatic grasping function, and improves the efficiency and precision of automatic grasp of robot arm.


2013 ◽  
Vol 273 ◽  
pp. 119-123
Author(s):  
Ding Jin Huang ◽  
Teng Liu

The use of traditional analytical method for manipulator inverse kinematics is able to get a display solution with the limitations of the application, only when the robotic arm has a specific structure. In view of the insufficient, this paper presents an improved artificial potential field method to solve the inverse kinematics problem of the manipulator which does not have a special structure. Firstly, establish the standard DH model for the robot arm. Then the strategy that improves search space of artificial potential field method and motion control standard is presented by combining artificial potential field method with the manipulator. Finally, the simulation results show that the proposed method is effective.


2018 ◽  
Author(s):  
Kaiwen Zhang

This paper presents on-going progress on Guardian, a low-cost automatic pill dispenser aimed to help the elderly community to take their medication on time. The device is composed of a cylindrical body with a pneumatically powered system and rotating robotic arm in the center column as its core technology. This information in the paper is meant to record the development process that led to the filing of a provisional patent USPTO 15964875 (Application Number).


2022 ◽  
Author(s):  
Madhav Rao

This study examines the system integration of a game engine with robotics middleware to drive an 8 degree offreedom (DoF) robotic upper limb to generate human-like motion for telerobotic applications. The developed architectureencompasses a pipeline execution design using Blender Game Engine (BGE) including the acquisition of real humanmovements via the Microsoft Kinect V2, interfaced with a modeled virtual arm, and replication of similar arm movements on the physical robotic arm. In particular, this study emphasizes the integration of a human “pilot” with ways to drive such a robotic arm through simulation and later, into a finished system. Additionally, using motion capture technology, a human upper limb action was recorded and applied onto the robot arm using the proposed architecture flow. Also, we showcase the robotic arm’s actions which include reaching, picking, holding, and dropping an object. This paper presentsa simple and intuitive kinematic modeling and 3D simulation process, which is validated using 8-DoF articulated robot to demonstrate methods for animation, and simulation using the designed interface.


Robotica ◽  
1996 ◽  
Vol 14 (1) ◽  
pp. 103-109 ◽  
Author(s):  
B. Eldridge ◽  
K. Gruben ◽  
D. LaRose ◽  
J. Funda ◽  
S. Gomory ◽  
...  

SummaryWe have designed a robotic arm based on a double parallel four bar linkage to act as an assistant in minimally invasive surgical procedures. The remote center of motion (RCM) geometry of the robot arm kinematically constraints the robot motion such that minimal translation of an instrument held by the robot takes place at the entry portal into the patientApos;s body. In addition to the two rotational degrees of freedom comprising the RCM arm, distal translation and rotation are provided to manoeuver the instrument within the patient's body about an axis coincident with the RCM. An XYZ translation stage located proximal to the RCM arm provides positioning capability to establish the RCM location relative to the patients anatomy. An electronics set capable of controlling the system, as well as performing a series of safety checks to verify correct system operation, has also been designed and constructed. The robot is capable of precise positional motion. Repeatability in the ±10 micron range is demonstrated. The complete robotic system consists of the robot hardware and an IBM PC-AT based servo controller connected via a custom shared memory link to a host IBM PS/2. For laparoscopic applications, the PS/2 includes an image capture board to capture and process video camera images. A camera rotation stage has also been designed for this application. We have successfully demonstrated this system as an assistant in a laparoscopic cholecystectomy. Further applications for this system involving active tissue manipulation are under development.


Sign in / Sign up

Export Citation Format

Share Document