Malicious Route Detection in Vehicular Ad-hoc Network using Geographic Routing with Masked Data

2020 ◽  
Vol 13 (3) ◽  
pp. 319-325
Author(s):  
Saravanan Palani ◽  
Logesh Ravi ◽  
Vijayakumar Varadarajan ◽  
Subramaniyaswamy Vairavasundaram ◽  
Xiao-Zhi Gao

Background: Vehicular Ad-hoc Network is the subset of Mobile Ad-hoc Network, Intelligent Transport System and Internet of Things. The acting nodes in VANET are the vehicles on the road at any moment. Objective: The anonymity character of these vehicles is opening the opportunity for malicious attacks. Malicious routes increase the data retransmission and hence, the performance of routing will be degraded. The main objective this work is to identify the malicious routes, avoid the data transmission using these routes and increase the packet delivery ratio. Methods: In the proposed system called Geographic Routing Protocol with Masked data, two binary- codes called mask and share have been generated to identify the malicious route. The original data is encoded using these binary-codes and routed to the destination using the geographic routing protocol. It is reconstructed at the destination node and based on the encoding technique the malicious routes and malicious nodes are identified. Simulations were conducted with varying speed and varying network size in 20 km2 geographical area. Results: The average packet delivery ratio with varying speed is 0.817 and with varying networksize is 0.733. Conclusion: The proposed geographical routing protocol with masked data technique outperforms than traditional geographic protocol and Detection of Malicious Node protocol, by 0.102 and 0.264 respectively with different speeds and by 0.065 and 0.1616 respectively with different network size.

2019 ◽  
Vol 1 (1) ◽  
pp. 77-85
Author(s):  
Yunia Puspita Wulandari ◽  
Andy Hidayat Jatmika ◽  
Fitri Bimantoro

Mobile Ad-Hoc Network (MANET) is a development of the Ad-Hoc Network, where the nodes of this network have dynamic mobility. There are several types of routing protocols in MANET, one of which is AOMDV. Route discovery on the AOMDV routing protocol is done by calculating the distance based on the number of hops. If the number of hops increased, it may cause a considerable delay and a decrease in throughput. This study compares the performance of the AOMDV routing protocol with the Path Aware-AOMDV (PA-AOMDV) routing protocol. PA-AOMDV routing protocol is obtained through modifications to the performance of the AOMDV protocol with the Path Aware SHORT algorithm. The Path Aware SHORT algorithm is a method to reduce the number of hops. SHORT improves routing optimization by monitoring routes and optimizing these routes that have better paths. The performance of both protocols will be seen based on four parameters, namely throughput, average end-to-end delay, packet delivery ratio, and routing overhead. Result shows that the throughput increased for 50 nodes is 61,84% and for 100 nodes is 45,2%, average end-to-end delay decreased for 50 nodes is 0,066% and for 100 nodes 0,12%, packet delivery ratio increased for 50 nodes is 60,87% and for 100 nodes 82,02%, and routing overhead decreased for 50 nodes is 67,07% and 100 nodes 45,36%.


Author(s):  
Linna Oktaviana Sari ◽  
Agusurio Azmi ◽  
Ery Safrianti ◽  
Feranita Jalil

Pekanbaru city is a large area, therefore traffic congestion often occurs due to the density of society’s vehicles. From this problem, it is needed a technology that can exchange information between vehicles. Information Technology that can involve many vehicles with special network types without dependence on an infrastructure is Ad Hoc Network. One type of this network is Vehicular Ad Hoc Network (VANET). VANET is a new concept in enabling communication between Vehicle to Vehicle (V2V). For efficient data packet delivery, VANET requires a routing protocol. In this research, for simulated and analyzed performance is used the Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA) protocol. NS-2 is used to simulated a moved nodes, SUMO software is used to simulated real map of SKA Mall crossroad and parameter the quality of performance routing protocol DSR can determined by End to End Delay, Packet Delivery Ratio (PDR) and Routing Overhead (RO). This simulation uses scenario 100 nodes, 150 nodes, 200 nodes and 250 nodes. The simulation results with the scenario of changing the number of nodes, the DSR routing protocol produces better performance with an average of  End to End Delay is 0.1066 s, average of PDR is 95.45% and average of RO is 1.0076. While the TORA routing protocol has an average of End to End Delay is 0.1163s, average of PDR is 93.49% and average of RO is 1.0801. And in the scenario of node speed changes, the TORA routing protocol produces better performance with an average of End to End Delay is 0.0861 s and average of PDR 97.37%. While the DSR routing protocol is better with an average of RO is 1.0076.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


Author(s):  
Kamlesh Kumar Rana ◽  
Vishnu Sharma ◽  
Vishal Jain ◽  
Sanjoy Das ◽  
Gagan Tiwari ◽  
...  

Vehicular ad-hoc network (VANET) is an autonomous system of mobile vehicles in which vehicles are a source of information. In VANET, direct communication between vehicles provides high-level safety and hassle-free drive. Large moving vehicles such as trucks or buses may affect direct communication of vehicles as a nonline of sight (NLOS) may occur. NLOS restricts direct communication of vehicles. Even the corresponding vehicle is within the communication range of the communicating vehicle. To overcome the NLOS problem and verify the location of the vehicles, this chapter has presented a routing mechanism, namely Directional Location Verification and Routing (DLVR) in Vehicular Ad-hoc Network. DLVR model prevents the false location information of the nodes by reduced packet drop and increased packet delivery ratio. Before transmitting data packets DLVR verifies data packets through reliability check. Through simulation work, it has shown the proposed DLVR model reduced packet drop and increased packet delivery ratio which increases the network performance.


2013 ◽  
Vol 684 ◽  
pp. 547-550
Author(s):  
Sery Vuth Tan ◽  
Minh Yuk Choi ◽  
Kee Cheon Kim

Mobile Ad-hoc Network (MANET) is a dynamic wireless network without any infrastructures. The network is weak and vulnerable to many types of attacks. One of these attacks is BlackHole. In this attack, a malicious node advertises itself as having a high sequence number and a shortest path to a specific node to absorb packets. The effect of BlackHole attack on ad-hoc network using AODV as a routing protocol will be examined in this research. We also propose a new mechanism, called DPBA-AODV, to detect and prevent BlackHole attacks on AODV protocol. Simulation result, by using NS2, depicts the efficiency of our proposed mechanism in packet delivery ratio under the presence of BlackHole nodes.


Now a day’s mobile ad-hoc network (MANET) is engaged by numerous scientists and endeavoring to be conveyed by and by. To accomplish this objective, these two components are a significant issue that we need to consider. The first is "overhead". As it were, messages that is not important to be sent when setting up a system association between versatile hubs. The following issue is the parcel sending rate from source to the goal hub that sufficiently high to ensure a successful system association. This paper is concentrating on improving the exhibition of the Location-Aided Routing Protocol (LAR) regarding overhead decrease by adjusting the calculation of the MANET course disclosure process. The consequence of the reproduction shows that the proposed convention can decrease overhead definitely, growing system lifetime and increment parcel sending rate while contrasting and other traditional conventions.


2015 ◽  
Vol 738-739 ◽  
pp. 1115-1118
Author(s):  
Li Cui Zhang ◽  
Xiao Nan Zhu ◽  
Zhi Gang Wang ◽  
Guang Hui Han

Considering the shortcoming of the traditional Greedy Perimeter Stateless Routing Protocol in the Vehicular Ad hoc Networks ,this paper focuses on an improved GPSR protocol based on the density of vehicle flow .This new scheme includes macro-directing algorithm , micro-forwarding strategy and the maintenance of the neighbor list.The simulation result shows that compared with the traditional GPSR protocol, the new GPSR protocol improves data packet delivery ratio, but its average end-to-end delay is slightly larger than before.


2018 ◽  
Vol 22 (2) ◽  
pp. 120-128
Author(s):  
Rohmah Nur Hidayah ◽  
Indrabayu Indrabayu ◽  
Intan Sari Areni

Intelligent Transportation Systems (ITS) menawarkan paradigma pemodelan baru yang mendukung komunikasi antar kendaraan secara real time menggunakan routing protocol yang disebut Vehicular Ad Hoc Network (VANET). Pada dasarnya kinerja routing protocol dipengaruhi oleh arus dan aturan lalu lintas yang bersifat dinamis sehingga perubahan tersebut akan menyebabkan perubahan pada kinerja routing protocol juga. Untuk itu, penelitian ini mengusulkan rancangan mobilitas realistis berdasarkan data makroskopis dan mikroskopis jalan perkotaan. Rancangan mobilitas dibagi menjadi 2 skenario berdasarkan kepadatan kendaraan, yaitu 125 dan 200 node. Penelitian ini bersifat simulasi dan dibagi menjadi 2 tahap. Tahap pertama yaitu simulasi mobilitas yang menunjukkan pergerakan kendaraan serta aturan lalu lintas yang disesuaikan dengan kondisi realistis. Tahap kedua adalah simulasi jaringan yang bertujuan untuk mengevaluasi kinerja routing protocol DSDV dan OLSR terhadap rancangan model mobilitas. Untuk menguji kinerja kedua  routing protocol, maka digunakan 3 metrik pengujian yaitu Packet Delivery Ratio (PDR), Overhead Ratio (OR) dan End to End Delay (E2ED). Hasil simulasi menunjukkan OLSR unggul pada metrik PDR dan OR, yaitu masing-masing 88.62% dan 57.11%. Sedangkan E2ED terbaik ditunjukkan oleh DSDV dengan nilai 0.523 detik. Kinerja terbaik kedua routing protocol ditunjukkan pada skenario 125 node. Hal ini menunjukkan kedua routing protocol belum mampu mengatasi kondisi lalu lintas perkotaan yang sangat padat.


Sign in / Sign up

Export Citation Format

Share Document