scholarly journals Packet Delivery Ratio and Overhead Reduction for À-GPS Mobile Ad-Hoc Networks

Now a day’s mobile ad-hoc network (MANET) is engaged by numerous scientists and endeavoring to be conveyed by and by. To accomplish this objective, these two components are a significant issue that we need to consider. The first is "overhead". As it were, messages that is not important to be sent when setting up a system association between versatile hubs. The following issue is the parcel sending rate from source to the goal hub that sufficiently high to ensure a successful system association. This paper is concentrating on improving the exhibition of the Location-Aided Routing Protocol (LAR) regarding overhead decrease by adjusting the calculation of the MANET course disclosure process. The consequence of the reproduction shows that the proposed convention can decrease overhead definitely, growing system lifetime and increment parcel sending rate while contrasting and other traditional conventions.

2013 ◽  
Vol 684 ◽  
pp. 547-550
Author(s):  
Sery Vuth Tan ◽  
Minh Yuk Choi ◽  
Kee Cheon Kim

Mobile Ad-hoc Network (MANET) is a dynamic wireless network without any infrastructures. The network is weak and vulnerable to many types of attacks. One of these attacks is BlackHole. In this attack, a malicious node advertises itself as having a high sequence number and a shortest path to a specific node to absorb packets. The effect of BlackHole attack on ad-hoc network using AODV as a routing protocol will be examined in this research. We also propose a new mechanism, called DPBA-AODV, to detect and prevent BlackHole attacks on AODV protocol. Simulation result, by using NS2, depicts the efficiency of our proposed mechanism in packet delivery ratio under the presence of BlackHole nodes.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Murtadha M. A. Alkadhmi ◽  
Osman N. Uçan ◽  
Muhammad Ilyas

With the reliance of humans on mobile smart devices that have wireless communication, modules have significantly increased in recent years. Using these devices to communicate with the survivors during a disaster or its aftermath can significantly increase the chances of locating and saving them. Accordingly, a method is proposed in this study to extend the lifetime of the nodes in a Mobile Ad Hoc Network (MANET) while maintaining communications with the nearest base station (BS). Such a methodology allows the rapid establishment of temporary communications with these survivors, as restoring the complex infrastructure is a time-consuming process. The proposed method achieves the longer lifetime of the network by balancing the load throughout the nodes and avoids exhausting those with limited remaining energy. The proposed method has shown significant improvement in the lifetime of the MANET while maintaining similar Packet Delivery Rate (PDR) and route generation time, compared to existing methods.


Author(s):  
Osama H.S. Khader

In mobile ad hoc networks, routing protocols are becoming more complicated and problematic. Routing in mobile ad hoc networks is multi-hop because of the limited communication range of wireless radios. Since nodes in the network can move freely and randomly, an efficient routing protocol is needed in order for such networks to be able to perform well in such an environment. In this environment the routing strategy is applied such that it is flexible enough to handle large populations and mobility and be able to minimize the use of the battery. Also it should be designed to achieve maximum packet delivery ratio. Further more, the routing protocol must perform well in terms of fast convergence, low routing delay, and low control overhead traffic. In this paper an improved implementation of the Fisheye State Routing (FSR) protocols is presented, where a new selection routing criteria that utilizes a minimum number of hops is a selection metric. The results obtained from simulation indicate that the fewer number of hops used the better and more efficient the output for packet delivery ratio was generated.


Author(s):  
Rajendra Prasad P ◽  
Shiva Shankar

Introduction: The aim of the securing energy routing protocol, is to provide the countermeasures to the attacks par-ticularly to the black hole in mobile ad-hoc network, and enhancing the network performance metric throughput al-so reducing the end-to-end delay between the nodes in the network.To build the protocol that enhances the perfor-mance of the network by modifying the existing DSR protocol by introducing new route discovery mechanism in the proposed protocol. Method: The proposed protocol implementation has two phases, route request/reply phase and route confirm phas-es. During the route discovery process, the route discovery from the source to destination process are described by sending the RREQ packet from the source hub as shown in Fig. 1(a), when it does not have one accessible and crav-ings a route to a destination. The source node transmits the RREQ to its associate nodes and the destination node re-ply with RREP. When the source receives reply message, the source node respond with reverse path with a confirm RCON message and providing security to the nodes in the network. Results: To verify the performance of the proposed protocol against the existing DSR protocol are compared with respect to various network metrics like end-to-end delay and packet delivery ratio and validated the result by com-paring both routing algorithm using Network Simulator 2. Conclusion: The results of the proposed SERP strongly safeguard against the attacks in the network and the packet delivery ratio is increased compared with the DSR also the end-to-end delay is reduced in the proposed protocol. Discussion: Mobile ad-hoc networks are being dynamic in nature, it associates with issues relating to secure routing, energy and are generally vulnerable to several types of attacks. The DSR is one of the widely used reactive proto-cols available for the mobile ad-hoc network and the proposed work enhancing the security of the network in the existing pro


Author(s):  
Soumya S. ◽  
Krishna Prasad K. ◽  
Navin N. Bappalige

Mobile Ad Hoc networks is a network in which energy is a main constraint and selection of a protocol that minimizes the energy usage is a key issue. Mobile Ad hoc network communicates with other nodes, without the help of base station and Communication is possible by forwarding a data unit consisting of control information and user data known as packets from one node to other. Furthermore, another key issue in mobile ad hoc networks is routing since the nodes are in mobility and tend to change the paths and move out of the network. The evaluation of energy efficient routing protocols can be effectively performed using NS3. Three types of routing protocols can be seen, Reactive, Proactive and Hybrid and in this paper, AODV a reactive protocol and OLSR a proactive protocol is compared and Delivery ratio of packets, Packet Loss and count of packets received are evaluated to analyze the energy efficiency of protocols based on these metrics.


A Mobile Ad-hoc Network (MANET) is an independent assortment of mobile users that communicate over moderately bandwidth constrained wireless links. MANET’s topology is dynamic that can change rapidly because the nodes move freely and can organize themselves randomly; has the advantage of being quickly deployable. Although numerous routing protocols have been proposed for mobile ad hoc networks, there is no universal scheme that works well in scenarios with different network sizes, traffic loads and node mobility patterns, so mobile ad hoc routing protocol election presents a great challenge. In this paper, an attempt has been made to compare the performance of three routing protocols in Mobile Ad-hoc Networks – Ad-Hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Destination Sequenced Distance Vector (DSDV). We have evaluated the performance of these routing protocols with varying the number of mobile nodes and packet sizes on the basis of four important metrics such as packet delivery ratio, average end to end delay, normalized routing overhead and throughput. Network Simulator version 2.35 (NS-2.35) is used as the simulation tool for evaluating these performance metrics. The outcome of this research shows that AODV protocol outperforms DSDV and DSR protocols.


2012 ◽  
Vol 224 ◽  
pp. 520-523
Author(s):  
Hyun Jong Cha ◽  
Jin Mook Kim ◽  
Hwang Bin Ryou

A mobile ad-hoc network is a method of communication between different nodes (mobile devices) without the use of base stations, which are used in wired networks. In a Mobile ad-hoc network, nodes can play the role of a receiver, sender, or a relay. As movement is flexible in Mobile ad-hoc networks and nodes have limited resources, nodes may join the communication or exit it at any time. Therefore, for Mobile ad-hoc networks, routing techniques - selecting communication routes and maintaining them – is considered important in an environment of constantly changing network topology. To overcome this problem, this paper proposes a reliable routing protocol based on MP-AOMDV, which monitors changes in signal strength not only for GPS signals but reception signals as well. Although MP-AOMDV was researched under the assumption of fixed movement direction and speed, this paper proposes a routing technique that works with changing movement direction or speed of nodes.


2020 ◽  
Vol 1 (1) ◽  
pp. 7-14
Author(s):  
Chen Chao ◽  
Liang Jun ◽  
Sun Xin

Mobile ad hoc networks use the wireless network and have wider applications especially in emergency situation, military combat zones, and the mobility vehicles. The mobile ad hoc network especially poses the problem of security and efficiency as the network is often subject to internal and external attacks. To overcome such problems, different protocols are proposed. In this study, an improved protocol is proposed which makes use of hexacol cluster method and thus provide greater efficiency and security to the network. For validating the proposed method, a stimulation was performed and results were compared with other protocols. The results indicate that the proposed method showed improved performance compare to the other protocol.


2021 ◽  
Vol 9 (1) ◽  
pp. 191-197
Author(s):  
Omar Faruque, Tadiwa Elisha Nyamasvisva, Abdullahi Mujaheed Saleh, Hasliza Binti Hashim

Wireless technology has brought a very advanced change in the field of the internet. It has given rise to many new applications. In recent years, a lot of work has been done in the field of Mobile Ad hoc Networks (MANET) which makes it so popular in the area of research work. MANET is an infrastructure-less, dynamic network that consists of a collection of wireless mobile nodes, and the communication between these nodes has been carried out without any centralized authority. There are several network performance metrics, Packet Loss and End-to-End Delay which can be taken into account, for getting a general idea about the performance of the Geographical Routing Protocol in Mobile Ad-Hoc Networks. The proposed research will evaluate the parameters which affect the communication in the Geographical Routing Protocol in Mobile Ad-Hoc Networks.


Author(s):  
Sunil Kumar ◽  
Kamlesh Dutta

A Mobile Ad hoc NETwork (MANET) is a self-organizing, infrastructure-less network of mobile nodes connecting by wireless links. In operation, the nodes of MANETs do not have a central control mechanism. It is known for its properties of routable network, where each node acts as a router to forward packets to other specific nodes in the network. The unique properties of MANET have made it useful for large number of applications and led to a number of security challenges. Security in the mobile ad hoc network is a very critical job and requires the consideration of different security issues on all the layers of communication. The countermeasures are the functions that reduce or eliminate security vulnerabilities and attacks. This chapter provides a comprehensive study of all prominent attacks in Mobile Ad Hoc Networks described in the literature. It also provides various proactive and reactive approaches proposed to secure the MANETs. Moreover, it also points to areas of research that need to be investigated in the future.


Sign in / Sign up

Export Citation Format

Share Document