The Effect of Dicarboxylic Acid Catalyst Structure on Hydrolysis of Cellulose Model Compound D-Cellobiose in Water

2021 ◽  
Vol 08 ◽  
Author(s):  
Harshica Fernando ◽  
Ananda S. Amarasekara

Background: Polycarboxylic acids are of interest as simple mimics for cellulase enzyme catalyzed depolymerization of cellulose. In this study, DFT calculations were used to investigate the effect of structure on dicarboxylic acid organo-catalyzed hydrolysis of cellulose model compound D-cellobiose to D-glucose. Methods: Binding energy of the complex formed between D-cellobiose and acid (Ebind), as well as glycosidic oxygen to dicarboxylic acid closest acidic H distance were studied as key parameters affecting the turn over frequency of hydrolysis in water. Result: α-D-cellobiose - dicarboxylic acid catalyst down face approach showed high Ebind values for five of the six acids studied; indicating the favorability of down face approach. Maleic, cis-1,2-cyclohexane dicarboxylic, and phthalic acids with the highest catalytic activities showed glycosidic oxygen to dicarboxylic acid acidic H distances 3.5-3.6 Å in the preferred configuration. Conclusion: The high catalytic activities of these acids may be due to the rigid structure, where acid groups are held in a fixed geometry.

2009 ◽  
Vol 113 (8) ◽  
pp. 3181-3188 ◽  
Author(s):  
Daizo Yamaguchi ◽  
Masaaki Kitano ◽  
Satoshi Suganuma ◽  
Kiyotaka Nakajima ◽  
Hideki Kato ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (50) ◽  
pp. 28902-28907 ◽  
Author(s):  
Runming Gong ◽  
Zihao Ma ◽  
Xing Wang ◽  
Ying Han ◽  
Yanzhu Guo ◽  
...  

Waste newspaper is one of the most common cellulosic materials.


EKUILIBIUM ◽  
2013 ◽  
Vol 12 (1) ◽  
Author(s):  
Enny Kriswiyanti

<p>Abstract : Sweet sorghum stem residues contains high enough cellulose (36.92%)so it can be<br />hydrolyzed to glucose. In this research, hydrolysis of cellulose is carried out using hydrochloric<br />acid catalyst. This research aims to determine the effect of acid catalyst concentration and<br />agitation speed on the resulting reduction of glucose levels and determine the reaction rate<br />constant of hydrolysis of sweet sorghum stem residues. The observed variables were the<br />concentration of hydrochloric acid catalyst (0.5 N, 1 N, 1.5 N, 2 N) and the agitation speed (150<br />rpm, 200 rpm, 250 rpm, 300 rpm). Glucose samples were analyzed by using the Lane-Eynon<br />method. Data analysis showed the higher concentration of hydrochloric acid (HCl) and the<br />agitation speed, the levels of reduced glucose that is formed is also higher. In this study by<br />assuming a first order reaction, the reaction rate constants obtained at variable concentrations of<br />hydrochloric acid catalyst ranged from 0.0010 to 0.0033 / minute and at agitation speeds variable<br />ranged from 0.0023 to 0.0030 / minute.<br />Keywords : sweet sorghum stem residues, hydrochloric acid, hydrolysis, cellulose</p>


2018 ◽  
Vol 55 (1B) ◽  
pp. 145
Author(s):  
T-Que Phuong Phan

In this study, a carbon–based solid acid catalyst was prepared via hydrothermal carbonization method (HTC) using glucose and pyrolysed waste tyre as carbon precursors and aqueous solution of H2SO4 as sulfonation agent. Prepared catalysts were characterized by X–ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared FT–IR and Brunauer–Emmett–Teller (BET). As the result, catalysts were manufactured with the appropriate physical and chemical characteristics and high acidity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Changyue Ma ◽  
Bo Cai ◽  
Le Zhang ◽  
Junfeng Feng ◽  
Hui Pan

In this work, acid-catalyzed conversion of cellulose into levulinic acid in a biphasic solvent system was developed. Compared to a series of catalysts investigated in this study, the Amberlyst-15 as a more efficient acid catalyst was used in the hydrolysis of cellulose and further dehydration of derived intermediates into levulinic acid. Besides, the mechanism of biphasic solvent system in the conversion of cellulose was studied in detail, and the results showed biphasic solvent system can promote the conversion of cellulose and suppress the polymerization of the by-products (such as lactic acid).The reaction conditions, such as temperature, time, and catalyst loading were changed to investigate the effect on the yield of levulinic acid. The results indicated that an appealing LA yield of 59.24% was achieved at 200°C and 180 min with a 2:1 ratio of Amberlyst-15 catalyst and cellulose in GVL/H2O under N2 pressure. The influence of different amounts of NaCl addition to this reaction was also investigated. This study provides an economical and environmental-friendly method for the acid-catalyzed conversion of cellulose and high yield of the value-added chemical.


2015 ◽  
Vol 71 ◽  
pp. 56-60 ◽  
Author(s):  
Shuying Xu ◽  
Ziting Tan ◽  
Guorui Cai ◽  
Chunrong Xiong ◽  
Wei Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document