SeDeM Expert System, An Innovative Tool for Developing Directly Compressible Tablets: A Review

2020 ◽  
Vol 12 ◽  
Author(s):  
Inderbir Singh ◽  
Ajay Kumar Thakur ◽  
Rajni Bala ◽  
Reecha Madan

Background: SeDeM (Sediment Delivery Model) expert system is a preformulation tool employed for evaluating direct compression suitability of various excipients. SeDeM is a 12 parameter and SeDeM-ODT (Sediment Delivery Model-Orodispersible tablets) is a 15 parameter derived diagram that can be used as a research tool for reducing the product development time. Best possible excipients for a specified pharmaceutical active ingredient could be screened for direct compression suitability. Objective: SeDeM expert system has been successfully used and implemented for characterizing galenic properties of pharmaceutical excipients, direct compression suitability of excipients, development of ODT formulations, development of sustained release formulations and development of tablets of taste masked drugs. Conclusion: In the present review paper development and applications of SeDeM and SeDeM-ODT systems have been discussed in detail.

Author(s):  
Johnny Edward Aguilar ◽  
Encarna García Montoya ◽  
Pilar Pérez Lozano ◽  
Josep M. Suñe Negre ◽  
Montserrat Miñarro Carmona ◽  
...  

1970 ◽  
Vol 2 (2) ◽  
pp. 76-80
Author(s):  
Tajnin Ahmed ◽  
Muhammad Shahidul Islam ◽  
Tasnuva Haque ◽  
Mohammad Abusyed

In the present study sustained release diclofenac sodium matrix tablets were prepared using Kollidon SR polymer. Hydroxypropyl methylcellulose (HPMC 15 cps) and poly ethylene glycol (PEG-600) polymers respectively were used in formulating tablets prepared by direct compression and wet granulation methods. The polymers were used to explore the release pattern of the drug into the dissolution media. The tablets were also prepared in various shapes (caplet oval, round oval and flat oval). A comparatively higher release rate of drug was obtained from the polymer HPMC 15 cps at 10% concentration for directly compressed matrix tablet than those containing 20% of HPMC after a definite period of time. In wet granulation process, 10% PEG-600 containing tablets showed a better release than those containing 20% PEG. The drug release was also found to be sustained in case of wet granulation method than that of the direct compression method. Again the caplet shaped tablets in case of direct compression method showed better release rate of drug than those of the round oval and flat oval shaped tablets. Thus the result of this study shows that the proper selection of the percentage of polymer and the suitable shape of tablet and proper manufacturing method can provide a greater opportunity in designing sustained release dosage forms. Key words: Matrix tablet; release pattern; direct compression; wet granulation; PEG 600; Kollidon SR.DOI: 10.3329/sjps.v2i2.5828Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 76-80


2018 ◽  
Vol 11 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Meenakshi Malik ◽  
Mukesh Sehgal ◽  
A.K. Kanojia ◽  
R. V. Singh

2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


2019 ◽  
Vol 9 (4) ◽  
pp. 574-578
Author(s):  
Mohammad Faizan Mohammad Gufran ◽  
Sailesh Kumar Ghatuary ◽  
Reena Shende ◽  
Prabhat Kumar Jain ◽  
Geeta Parkhe

Formulation development is an important part of drug design and development. Bioavailability and bioequivalence are totally dependent on formulation development. Now-a-days formulation development is done by following QbD (Quality by Design).The aim of present study is to formulate Gemfibrozil (Gem) sustained release (SR) and immediate release (IR) bilayer tablet by different concentration of Hydroxypropyl methylcellulose (HPMC) and HPMC K 100 M to control the release pattern. The sustained release layer of Gem was prepared by using different grades of HPMC like, HPMC K-15, HPMC K-4 along with other excipients by direct compression technique. The immediate release layer of Gem was prepared by Cross carmellose sodium, Crospovidone and Sodium starch glycolate by direct compression technique. The powders were evaluated for their flow properties and the finished tablets were evaluated for their physical parameters. The both immediate release and sustained release layers of Gem were characterized by FT-IR and in vitro dissolution studies. The drug release study of Gem was evaluated using USP-II paddle type dissolution apparatus. The release rate of Gem in immediate release layer was studied for 15 min in 0.1 N HCL media and that of Gem in sustained release layer was studied for 12 h in 0.1 N HCL. From the nine batches F6 batch showed good release behaviour 99.85% of drug is released over 12 hours. Gem belongs to BCS Class II (log P 3.6) with poor solubility and high permeability resulting in limited and variable bioavailability. Total four trial batches of each drug have been manufactured to optimize and develop a robust and stable formulation, the stability studies of the products also comply with ICH guideline. Keywords: Bilayer floating tablets, Gemfibrozil, Biphasic drug release, HPMC K 15.


2016 ◽  
Vol 27 (1) ◽  
pp. 58-61
Author(s):  
Valeriu Iancu ◽  
Florentina Roncea ◽  
Radu George Cazacincu ◽  
Dumitru Lupuleasa

Abstract Orally disintegrating tablets (ODTs) are dosage forms which disintegrate in mouth within seconds without need of water. This type of quality in dosage form can be attained by addition of different varieties of excipients. Pharmaburst™ 500 is a co-processed excipient system which allows rapid disintegration and low adhesion to punches. The aim of the present study was to develop and evaluate 25 mg diclofenac sodium ODTs (orodispersible tablets) batches by direct compression method at different compression forces 10 kN (F1) and 20 kN (F2) and directly compressible excipients used in different ratio (Avicel PH 102, magnesium stearate and coprocessed excipient Pharmaburst™ 500, 70% and 80% w/w). The obtained batches were analyzed for appearance, tablet thickness, uniformity of weight, hardness, friability, disintegration time, and non-compendial methods (wetting time). Co-processed Pharmaburst™ 500 excipient 70% used for sodium diclofenac ODT obtaining determined good results for quality control tests evaluation.


Sign in / Sign up

Export Citation Format

Share Document