The Impact of Occupants in Thermal Comfort and Energy Efficiency in Buildings

Author(s):  
António Ruano ◽  
Karol Bot ◽  
Maria da Graça Ruano
2021 ◽  
Author(s):  
Chafik Murad

Cantilevered concrete balcony slabs are being investigated in high-rise (MURBs) to control thermal bridging in terms of energy efficiency and thermal comfort where the use of a proprietary thermal break was the prime application as a solution to improving energy efficiency. This MRP investigated the thermal performance of using a lower U-value framed glazing condition and an insulated curb condition and developed assemblies in scenarios that were simulated in THERM, and focused on the technical performance of thermal comfort benefit of insulated curb condition of 12.7 mm thick EPS. Concrete surface temperatures were significantly increased in values from 4.8 °C to 9.6 °C and from 6.2 °C to 10.0 °C above balcony slab and from 6.7 °C to 10.8 °C below slab when an insulated curb condition was used in conventional scenarios and in a lower U-value framed condition scenario with no proprietary thermal break added. U-values are reduced 10% to 18% for the upper surface of balcony slab and 4% reduction of the overall U-values when an insulated curb condition is incorporated.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012172
Author(s):  
G Kiki ◽  
P André ◽  
A Houngan ◽  
C Kouchadé

Abstract The building represents one of the main actors of global warming of the planet because of the significant amounts of energy consumed. In Benin, 44,38% of electrical energy is consumed by office and service buildings. This is explained by the excessive use of air conditioning systems due to the lack of a thermal comfort index specific to the region. This work therefore focuses on assessing the impact of the choice of a thermal comfort model on the energy efficiency of buildings. For this purpose, an office building was chosen in the south of Benin and comfort surveys were conducted among the occupants. The model selected for this purpose is the adaptive model developed by López-Pérez and al. for air-conditioned buildings in humid tropical regions. Subsequently, a monitoring campaign of meteorological, hygrothermal and energetic data of the building was carried out during six months. The results obtained show that the average temperature of the offices (Tf ≈ 24°C) during the hours of occupancy is relatively lower than the comfort temperature determined with the model (Tc = 26.2°C). Moreover, the different simulations carried out under TRNSYS by substituting the office temperatures by the comfort temperature show a reduction of about 20% of the building’s energy consumption. This shows the importance of the comfort model of López-Pérez and al. in improving the energy efficiency of the building.


2021 ◽  
Author(s):  
◽  
Rajesh Haripersad

South Africa is a developing country with various construction projects that are being undertaken both by government and the private sector. The requirements for the construction of energy-efficient buildings as well as the selection methods for providing construction materials have hence become important. Energy efficiency improvements needs to be implemented in the construction of these buildings in order to decrease energy usage and costs and provide more comfortable conditions for its occupants. Previous studies revealed that most of the focus for improving energy efficiency in buildings has been on their operational emissions. It is estimated that about 30% of all energy consumed throughout the lifetime of a building is utilized as embodied energy (this percentage varies based on factors such as age of building, climate and materials). In the past this percentage was much lower, but with increased emphasis placed on reducing operational emissions (such as energy efficiency improvements in heating and cooling systems), the embodied energy contribution has become more significant. Hence, it is important to employ a life-cycle carbon framework in analysing the carbon emissions in buildings. The study aims to augment energy efficiency initiatives by showcasing energy reduction strategies for buildings. The study assessed the thermal performance of selected construction materials by analysing different buildings using energy modelling program, EnergyPlus and TRNSYS. The parametric study was set in the central plateau region of South Africa and was performed to determine appropriate energy efficiency improvements that can be implemented for maximum savings. A life cycle cost analysis was performed on the selected improvements. The models created are representative of the actual buildings when simulated data is compared to recorded data from these buildings. Results showed a significant variation in energy and construction costs with varying construction materials over the buildings’ life cycle. Findings suggest that there is a significant reduction in energy usage when simple efficiency measures are implemented. The study recommends the use of different energy efficient building materials and the implementation of passive interventions in the constructing of buildings; the thermal performance of a building be optimized to ensure thermal comfort and the developed model be adopted for use in the engineering and construction industry for the reduction of energy consumption.


2021 ◽  
Author(s):  
Chafik Murad

Cantilevered concrete balcony slabs are being investigated in high-rise (MURBs) to control thermal bridging in terms of energy efficiency and thermal comfort where the use of a proprietary thermal break was the prime application as a solution to improving energy efficiency. This MRP investigated the thermal performance of using a lower U-value framed glazing condition and an insulated curb condition and developed assemblies in scenarios that were simulated in THERM, and focused on the technical performance of thermal comfort benefit of insulated curb condition of 12.7 mm thick EPS. Concrete surface temperatures were significantly increased in values from 4.8 °C to 9.6 °C and from 6.2 °C to 10.0 °C above balcony slab and from 6.7 °C to 10.8 °C below slab when an insulated curb condition was used in conventional scenarios and in a lower U-value framed condition scenario with no proprietary thermal break added. U-values are reduced 10% to 18% for the upper surface of balcony slab and 4% reduction of the overall U-values when an insulated curb condition is incorporated.


2017 ◽  
Vol 8 (5) ◽  
pp. 221
Author(s):  
Sugiono Sugiono ◽  
Suluh E. Swara ◽  
Wisnu Wijanarko ◽  
Dwi H. Sulistyarini

2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


2021 ◽  
Vol 13 (13) ◽  
pp. 7251
Author(s):  
Mushk Bughio ◽  
Muhammad Shoaib Khan ◽  
Waqas Ahmed Mahar ◽  
Thorsten Schuetze

Electric appliances for cooling and lighting are responsible for most of the increase in electricity consumption in Karachi, Pakistan. This study aims to investigate the impact of passive energy efficiency measures (PEEMs) on the potential reduction of indoor temperature and cooling energy demand of an architectural campus building (ACB) in Karachi, Pakistan. PEEMs focus on the building envelope’s design and construction, which is a key factor of influence on a building’s cooling energy demand. The existing architectural campus building was modeled using the building information modeling (BIM) software Autodesk Revit. Data related to the electricity consumption for cooling, building masses, occupancy conditions, utility bills, energy use intensity, as well as space types, were collected and analyzed to develop a virtual ACB model. The utility bill data were used to calibrate the DesignBuilder and EnergyPlus base case models of the existing ACB. The cooling energy demand was compared with different alternative building envelope compositions applied as PEEMs in the renovation of the existing exemplary ACB. Finally, cooling energy demand reduction potentials and the related potential electricity demand savings were determined. The quantification of the cooling energy demand facilitates the definition of the building’s electricity consumption benchmarks for cooling with specific technologies.


Sign in / Sign up

Export Citation Format

Share Document