Electron Beam Melting

2021 ◽  
pp. 100-120
2020 ◽  
Vol 39 (4) ◽  
Author(s):  
Jan Kober ◽  
Alexander Kirchner ◽  
Alena Kruisova ◽  
Milan Chlada ◽  
Sigrun Hirsekorn ◽  
...  

2021 ◽  
pp. 153041
Author(s):  
Elizabeth A.I. Ellis ◽  
Michael A. Sprayberry ◽  
Christopher Ledford ◽  
Jameson P. Hankwitz ◽  
Michael M. Kirka ◽  
...  

Author(s):  
Mohammad Karimzadeh Kolamroudi ◽  
Mohammed Asmael ◽  
Mustafa Ilkan ◽  
Naser Kordani

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 496
Author(s):  
Khaja Moiduddin ◽  
Syed Hammad Mian ◽  
Wadea Ameen ◽  
Hisham Alkhalefah ◽  
Abdul Sayeed

Additive manufacturing (AM), particularly electron beam melting (EBM), is becoming increasingly common in the medical industry because of its remarkable benefits. The application of personalized titanium alloy implants produced using EBM has received considerable attention in recent times due to their simplicity and efficacy. However, these tailored implants are not cost-effective, placing a tremendous strain on the patient. The use of additional materials as support during the manufacturing process is one of the key causes of its high cost. A lot of research has been done to lessen the use of supports through various types of support designs. There is indeed a noticeable paucity of studies in the literature that have examined customized implants produced without or minimal supports. This research, therefore, reports on the investigation of cranial implants fabricated with and without supports. The two personalized implants are evaluated in terms of their cost, fabrication time, and accuracy. The study showed impressive results for cranial implants manufactured without supports that cost 39% less than the implants with supports. Similarly, the implant’s (without supports) build time was 18% less than its equivalent with supports. The two implants also demonstrated similar fitting accuracy with 0.2613 mm error in the instance of implant built without supports and 0.2544 mm for the implant with supports. The results indicate that cranial implants can be produced without EBM supports, which can minimize both production time and cost substantially. However, the manufacture of other complex implants without supports needs further study. The future study also requires a detailed review of the mechanical and structural characteristics of cranial implants built without supports.


Procedia CIRP ◽  
2021 ◽  
Vol 99 ◽  
pp. 336-341
Author(s):  
Manuela Galati ◽  
Giovanni Rizza ◽  
Alessandro Salmi ◽  
Sara Biamino ◽  
Cristian Ghibaudo ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 536 ◽  
Author(s):  
Sneha Goel ◽  
Kévin Bourreau ◽  
Jonas Olsson ◽  
Uta Klement ◽  
Shrikant Joshi

Electron beam melting (EBM) is gaining rapid popularity for production of complex customized parts. For strategic applications involving materials like superalloys (e.g., Alloy 718), post-treatments including hot isostatic pressing (HIPing) to eliminate defects, and solutionizing and aging to achieve the desired phase constitution are often practiced. The present study specifically explores the ability of the combination of the above post-treatments to render the as-built defect content in EBM Alloy 718 irrelevant. Results show that HIPing can reduce defect content from as high as 17% in as-built samples (intentionally generated employing increased processing speeds in this illustrative proof-of-concept study) to <0.3%, with the small amount of remnant defects being mainly associated with oxide inclusions. The subsequent solution and aging treatments are also found to yield virtually identical phase distribution and hardness values in samples with vastly varying as-built defect contents. This can have considerable implications in contributing to minimizing elaborate process optimization efforts as well as slightly enhancing production speeds to promote industrialization of EBM for applications that demand the above post-treatments.


Sign in / Sign up

Export Citation Format

Share Document