scholarly journals Crystallographic Microstructure Study of a Japanese Sword made by Noritsuna in the Muromachi Period by Pulsed Neutron Bragg-Edge Transmission Imaging

2021 ◽  
Vol 11 (11) ◽  
pp. 5219
Author(s):  
Yosuke Sakurai ◽  
Hirotaka Sato ◽  
Nozomu Adachi ◽  
Satoshi Morooka ◽  
Yoshikazu Todaka ◽  
...  

As a new method for evaluating single crystals and oligocrystals, pulsed neutron Bragg-dip transmission analysis/imaging method is being developed. In this study, a single Bragg-dip profile-fitting analysis method was newly developed, and applied for analyzing detailed inner information in a crystalline grain position-dependently. In the method, the spectrum profile of a single Bragg-dip is analyzed at each position over a grain. As a result, it is expected that changes in crystal orientation, mosaic spread angle and thickness of a perfect crystal can be evaluated from the wavelength, the width and the integrated intensity of the Bragg-dip, respectively. For confirming this effectiveness, the method was applied to experimental data of position-dependent Bragg-dip transmission spectra of a Si-steel plate consisting of oligocrystals. As a result, inner information of multiple crystalline grains could be visualized and evaluated. The small change in crystal orientation in a grain, about 0.4°, could be observed by imaging the Bragg-dip wavelengths. By imaging the Bragg-dip widths, both another grain and mosaic block in a grain were detected. Furthermore, imaging results of the integrated intensities of Bragg-dips were consistent with the results of Bragg-dip width imaging. These small crystallographic changes have not been observed and visualized by previous Bragg-dip analysis methods.


2020 ◽  
Vol 53 (1) ◽  
pp. 188-196 ◽  
Author(s):  
Chiara Carminati ◽  
Markus Strobl ◽  
Triestino Minniti ◽  
Pierre Boillat ◽  
Jan Hovind ◽  
...  

4D wavelength-resolved neutron tomography of a reference sample made of several polycrystalline materials, namely nickel, iron, titanium, lead, copper and aluminium, is presented. Data were acquired using the time-of-flight transmission imaging method at the IMAT beamline at the ISIS pulsed neutron source. Wavelength-dispersive tomography reconstruction was computed using filtered back projection, allowing wavelength-resolved total-cross-section retrieval for each voxel in the reconstructed volume of the sample. The need for background correction to enable quantitative results and analysis is discussed, and the achieved 3D spatial resolution with respect to the obtained Bragg-edge pattern quality is investigated.


2014 ◽  
Vol 60 ◽  
pp. 254-263 ◽  
Author(s):  
Hirotaka Sato ◽  
Yoshinori Shiota ◽  
Takashi Kamiyama ◽  
Masato Ohnuma ◽  
Michihiro Furusaka ◽  
...  

2015 ◽  
Vol 56 (8) ◽  
pp. 1147-1152 ◽  
Author(s):  
Hirotaka Sato ◽  
Tomoya Sato ◽  
Yoshinori Shiota ◽  
Takashi Kamiyama ◽  
Anton S. Tremsin ◽  
...  

2017 ◽  
Vol 88 ◽  
pp. 322-330 ◽  
Author(s):  
H. Sato ◽  
K. Watanabe ◽  
K. Kiyokawa ◽  
R. Kiyanagi ◽  
K.Y. Hara ◽  
...  

Author(s):  
K. A. Brookes ◽  
D. Finbow ◽  
Madeleine Samuel

Investigation of the particulate matter contained in the water sample, revealed the presence of a number of different types and certain of these were selected for analysis.An A.E.I. Corinth electron microscope was modified to accept a Kevex Si (Li) detector. To allow for existing instruments to be readily modified, this was kept to a minimum. An additional port is machined in the specimen region to accept the detector, with the liquid nitrogen cooling dewar conveniently housed in the left hand cupboard adjacent to the microscope column. Since background radiation leads to loss in the sensitivity of the instrument, great care has been taken to reduce this effect by screening and manufacturing components that are near the specimen from material of low atomic number. To change from normal transmission imaging to X-ray analysis, the special 4-position specimen rod is inserted through the normal specimen airlock.


Author(s):  
Steve Lindaas ◽  
Chris Jacobsen ◽  
Alex Kalinovsky ◽  
Malcolm Howells

Soft x-ray microscopy offers an approach to transmission imaging of wet, micron-thick biological objects at a resolution superior to that of optical microscopes and with less specimen preparation/manipulation than electron microscopes. Gabor holography has unique characteristics which make it particularly well suited for certain investigations: it requires no prefocussing, it is compatible with flash x-ray sources, and it is able to use the whole footprint of multimode sources. Our method serves to refine this technique in anticipation of the development of suitable flash sources (such as x-ray lasers) and to develop cryo capabilities with which to reduce specimen damage. Our primary emphasis has been on biological imaging so we use x-rays in the water window (between the Oxygen-K and Carbon-K absorption edges) with which we record holograms in vacuum or in air.The hologram is recorded on a high resolution recording medium; our work employs the photoresist poly(methylmethacrylate) (PMMA). Following resist “development” (solvent etching), a surface relief pattern is produced which an atomic force microscope is aptly suited to image.


Sign in / Sign up

Export Citation Format

Share Document