Frequency-Domain Identification of Radiation Forces for Floating Wind Turbines by Moment-Matching

2022 ◽  
Author(s):  
Y. Peña-Sanchez

Abstract. The dynamics of a floating structure can be expressed in terms of Cummins’ equation, which is an integro-differential equation of the convolution class. In particular, this convolution operator accounts for radiation forces acting on the structure. Considering that the mere existence of this operator is highly inconvenient due to its excessive computational cost, it is commonly replaced by an approximating parametric model. Recently, the Finite Order Approximation by Moment-Matching (FOAMM) toolbox has been developed within the wave energy literature, allowing for an efficient parameterisation of this radiation force convolution term, in terms of a state-space representation. Unlike other parameterisation strategies, FOAMM is based on an interpolation approach, where the user can select a set of interpolation frequencies where the steady-state response of the obtained parametric representation exactly matches the behaviour of the target system. This paper illustrates the application of FOAMM to a UMaine semi-submersible-like floating structure.

1994 ◽  
Vol 116 (4) ◽  
pp. 792-795 ◽  
Author(s):  
Kazuhiko Takahashi ◽  
Ichiro Yamada

This paper shows the effectiveness of a neural-network controller for controlling a flexible mechanism such as a flexible robot arm. An adaptive-type direct neural controller is formulated using state-space representation of the dynamics of the target system. The characteristics of the controller are experimentally investigated by using it to control the tip angular position of a single-link flexible arm.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. Vahidi ◽  
V. Jafari ◽  
M. H. Abyaneh ◽  
SH. Vahdani

This paper investigates different approximation techniques for planar beam column elements in force-based methods. The three fields, introduced in this review, are: curvature-based displacement interpolation (CBDI) used in matrix-based flexibility formulations, linear displacement approximation applied in state space, and higher-order displacement approximation utilized again in state space. Using these three approximation fields, the responses and their accuracies in some systems are compared in examples. Finally, focusing on the accuracy and regarding the performed analyses, it seems that the computational cost is reduced and accuracy of responses is elevated in many engineering problems using the higher-order approximation field in state space.


Author(s):  
Suresh Rajendran ◽  
C. Guedes Soares

Parametric rolling of a post-Panamax C11 class containership in regular and irregular waves is numerically investigated using body nonlinear time domain methods based on strip theory. The Froude-Krylov and the hydrostatic forces are calculated for the exact wetted surface area under the undisturbed incident wave profile. Two kinds of formulations are used for calculation of the radiation forces. The first one employs a linear radiation force in which the frequency dependent hydrodynamic coefficients are calculated for mean position of the sections at mean water level. The second formulation calculates the hydrodynamic coefficients for the exact submerged depth of ship sections under the undisturbed incident wave profile, and hence called as body nonlinear radiation force. The numerical results from the aforementioned formulations are compared with each other, and also with experimental results obtained from a wave tank in both regular and irregular waves. For all the cases in regular waves, the vulnerability to parametric rolling is clearly identified by the numerical models, even though a few discrepancies are observed in the estimation of the severity (maximum roll angle) of the problem. In this paper, the effects of the linear and body nonlinear radiation forces on the numerical calculation of parametric rolling of a container ship and the ability of the numerical methods to identify parametric rolling are investigated.


2022 ◽  
pp. 0272989X2110730
Author(s):  
Anna Heath

Background The expected value of sample information (EVSI) calculates the value of collecting additional information through a research study with a given design. However, standard EVSI analyses do not account for the slow and often incomplete implementation of the treatment recommendations that follow research. Thus, standard EVSI analyses do not correctly capture the value of the study. Previous research has developed measures to calculate the research value while adjusting for implementation challenges, but estimating these measures is a challenge. Methods Based on a method that assumes the implementation level is related to the strength of evidence in favor of the treatment, 2 implementation-adjusted EVSI calculation methods are developed. These novel methods circumvent the need for analytical calculations, which were restricted to settings in which normality could be assumed. The first method developed in this article uses computationally demanding nested simulations, based on the definition of the implementation-adjusted EVSI. The second method is based on adapting the moment matching method, a recently developed efficient EVSI computation method, to adjust for imperfect implementation. The implementation-adjusted EVSI is then calculated with the 2 methods across 3 examples. Results The maximum difference between the 2 methods is at most 6% in all examples. The efficient computation method is between 6 and 60 times faster than the nested simulation method in this case study and could be used in practice. Conclusions This article permits the calculation of an implementation-adjusted EVSI using realistic assumptions. The efficient estimation method is accurate and can estimate the implementation-adjusted EVSI in practice. By adapting standard EVSI estimation methods, adjustments for imperfect implementation can be made with the same computational cost as a standard EVSI analysis. Highlights Standard expected value of sample information (EVSI) analyses do not account for the fact that treatment implementation following research is often slow and incomplete, meaning they incorrectly capture the value of the study. Two methods, based on nested Monte Carlo sampling and the moment matching EVSI calculation method, are developed to adjust EVSI calculations for imperfect implementation when the speed and level of the implementation of a new treatment depends on the strength of evidence in favor of the treatment. The 2 methods we develop provide similar estimates for the implementation-adjusted EVSI. Our methods extend current EVSI calculation algorithms and thus require limited additional computational complexity.


Author(s):  
Roman M. Janssen ◽  
Henk Jansen ◽  
Jan-Willem van Wingerden

A novel frequency domain identification (FDI) strategy for the identification of radiation force models from frequency domain hydrodynamic data is proposed. First, a subspace identification method is augmented with a convex constraint that guarantees a stable solution. Then, in a second convex optimization problem, constraints on low- and high frequency asymptotic behavior and passivity are enforced. This novel method, constrained frequency domain subspace identification (CFDSI), is validated by comparing both SISO and MIMO CFDSI results with the state-of-the-art FDI toolbox, which is part of the Marine Systems Simulator MATLAB toolbox. In two test cases, it is shown that the novel algorithm can successfully identify a model with either a SISO or MIMO structure, where stability, passivity and the desired low- and high-frequency asymptotic behavior are guaranteed. For the two test cases presented, the quality of the CFDSI models matches the quality of the state-of-the-art FDI models.


2005 ◽  
Vol 32 (17-18) ◽  
pp. 2195-2216 ◽  
Author(s):  
Erlend Kristiansen ◽  
Åsmund Hjulstad ◽  
Olav Egeland

2011 ◽  
Vol 215 ◽  
pp. 259-262 ◽  
Author(s):  
Z.W. Wang ◽  
G.Q. Pan ◽  
Dong Hui Wen

This keynote paper aims at introducing applications of ultrasonic radiation force in industry. The chosen focus is to understand how to use it. Since the phenomenon of acoustic levitation can reflect the exciting of ultrasonic radiation force directly. The paper starts with an analysis on the tungsten ball floating on a sound field and ultrasonic micro-manipulation study in micro Electronic Mechanical System (MEMS). And ultrasound has been successfully used to degrade wastewater as its cavitation. At the same time, different kinds of micro-ultrasonic machining were used to show how exciting machining and ultrasonic radiation combined. A view from the authors and the final Conclusions show future applications of ultrasonic radiation force.


2010 ◽  
Vol 10 (3) ◽  
pp. 6995-7036
Author(s):  
M. Claeyman ◽  
J.-L. Attié ◽  
L. El Amraoui ◽  
D. Cariolle ◽  
V.-H. Peuch ◽  
...  

Abstract. This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE of Météo-France. On the one hand, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. In spite of small differences, the seasonal and global CO distributions obtained by both schemes present similar general characteristics. The mean differences between both schemes remain small within about ±25 ppbv (part per billion by volume) in the troposphere and ±15 ppbv in the stratosphere. On the other hand, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere. A good agreement is generally found in the troposphere and the lower stratosphere. In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 hPa between LINCO and MOPITT which is probably caused by too low emission values. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. We suggest that the underestimation of CO at polar latitudes is not related to the linear scheme but is induced by a too rapid transport by the meridional circulation. In the UTLS (Upper Troposphere Lower Stratosphere), LINCO tends to slightly overestimate the MOZAIC aircraft observations, with general small biases less than 2%. LINCO is a simple parameterization compared to a detailed chemical scheme, allowing very fast calculations and thus making possible long reanalyses of MOPITT CO data. The computational cost just corresponds to the transport of an additional passive tracer. For this, we used a variational 3-D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO 2-D distribution is improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. At extratropical latitudes, the assimilated fields tend to underestimate the CO concentrations resulting from an excessive equator to pole circulation. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years.


Sign in / Sign up

Export Citation Format

Share Document