Optimization of Anaerobic Digestion for Resource Recovery

2018 ◽  
Vol 2018 (13) ◽  
pp. 2599-2611
Author(s):  
David Parry ◽  
Cameron Clark ◽  
Corey Kliebert ◽  
Paul Steele
2018 ◽  
Vol 2018 (4) ◽  
pp. 353-365
Author(s):  
David Parry ◽  
Cameron Clark ◽  
Corey Kliebert ◽  
Paul Steele

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3411
Author(s):  
Clara Fernando-Foncillas ◽  
Maria M. Estevez ◽  
Hinrich Uellendahl ◽  
Cristiano Varrone

Wastewater and sewage sludge contain organic matter that can be valorized through conversion into energy and/or green chemicals. Moreover, resource recovery from these wastes has become the new focus of wastewater management, to develop more sustainable processes in a circular economy approach. The aim of this review was to analyze current sewage sludge management systems in Scandinavia with respect to resource recovery, in combination with other organic wastes. As anaerobic digestion (AD) was found to be the common sludge treatment approach in Scandinavia, different available organic municipal and industrial wastes were identified and compared, to evaluate the potential for expanding the resource recovery by anaerobic co-digestion. Additionally, a full-scale case study of co-digestion, as strategy for optimization of the anaerobic digestion treatment, was presented for each country, together with advanced biorefinery approaches to wastewater treatment and resource recovery.


2020 ◽  
Vol 301 ◽  
pp. 122778 ◽  
Author(s):  
Steven Wainaina ◽  
Mukesh Kumar Awasthi ◽  
Surendra Sarsaiya ◽  
Hongyu Chen ◽  
Ekta Singh ◽  
...  

2018 ◽  
Vol 260 ◽  
pp. 221-226 ◽  
Author(s):  
Ashley J. Ansari ◽  
Faisal I. Hai ◽  
William E. Price ◽  
Huu H. Ngo ◽  
Wenshan Guo ◽  
...  

REAKTOR ◽  
2017 ◽  
Vol 16 (3) ◽  
pp. 141
Author(s):  
Cindy Rianti Priadi ◽  
Iftita Rahmatika ◽  
Chihiya Fitria ◽  
Dwica Wulandari ◽  
Setyo Sarwanto Moersidik

BIOGAS ENERGY AND FERTILIZING POTENTIAL FROM PAPER SLUDGE Paper sludge contains potential as energy and fertilizer due to the high amount of C, N and P. The aims of this study were to investigate resource recovery potential through biogas production from paper sludge only and with cow manure as co-substrate for 30-45 days in batch anaerobic digestion reactor. In addition, the fertilizer potential from digestate was also tested in Vetiveria zizanioides. Co-digestion with cow manure yielded higher methane gas up to 380 CH4/g VS due to a more optimum C/N ratio. Vetiver plants grown on digestate relatively showed the high growth performance after 4 weeks. The heavy metal accumulation from digestate was still in tolerable amount since the growth rate was not significantly different with the plant grown in fertilizer. Therefore, resource recovery technology can be an option to recover C, N and P in paper sludge to achieve sustainable waste management.  Keywords: ananerobic digestion; biogas;  fertilizer; paper sludge AbstrakLumpur dari Air Limbah industri kertas memiliki C, N dan P yang tinggi sehingga berpotensi menghasilkan energi dan menjadi pupuk, Penelitian ini bertujuan untuk meneliti pemulihan sumber daya (resource recovery) melalui produksi biogas dari lumpur kertas tanpa dan dengan ko-substrat kotoran sapi selama 30-45 hari dalam reaktor batch anaerobic digestion. Selanjutnya potensi pupuk dari digestat juga diuji dengan tumbuhan akar wangi (Vetiveria zizanioides). Setelah 45 hari, lumpur kertas dengan kotoran sapi menghasikan gas metana yang lebih besar, yaitu 380 CH4/g VS. Tanaman akar wangi yang ditanam dengan dengan digestat R2 tumbuh relatif tinggi setelah 4 minggu. Akumulasi logam berat juga masih dalam batas aman karena laju pertumbuhannya yang masih sebanding dengan tanaman yang diberi pupuk. Oleh karena itu, pemulihan sumber daya dapat diterapkan untuk memanfaatkan C, N dan P yang terkandung dalam lumpur kertas sebagai usaha pengelolaan limbah berkelanjutan.  Kata Kunci: biogas; digestasi anaerobik; lumpur kertas; pupuk 


2021 ◽  
Vol 9 ◽  
Author(s):  
Aman Thakur ◽  
Sareeka Kumari ◽  
Shruti Sinai Borker ◽  
Swami Pragya Prashant ◽  
Aman Kumar ◽  
...  

With the growing population, solid waste management (SWM) is becoming a significant environmental challenge and an emerging issue, especially in the eco-sensitive Indian Himalayan region (IHR). Though IHR does not host high local inhabitants, growing tourist footfall in the IHR increases solid wastes significantly. The lack of appropriate SWM facilities has posed a serious threat to the mountain-dwelling communities. SWM is challenging in the highlands due to the remoteness, topographical configuration, increasing urbanization, and harsh climate compared to plain areas. Difficulty in managing SWM has led to improper disposal methods, like open dumping and open burning of waste, that are adversely affecting the fragile IHR ecosystem. Open dumping of unsegregated waste pollutes the freshwater streams, and burning releases major pollutants often linked to the glacier melt. Processes like composting, vermicomposting, and anaerobic digestion to treat biodegradable wastes are inefficient due to the regions' extreme cold conditions. IHR specific SWM rules were revised in 2016 to deal with the rising problem of SWM, providing detailed criteria for setting up solid waste treatment facilities and promoting waste-to-energy (WtE). Despite governments' effort to revise SWM; measures like proper collection, segregation, treatment, and solid waste disposal needs more attention in the IHR. Door-to-door collection, segregation at source, covered transportation, proper treatment, and disposal are the primary steps to resource recovery across the IHR. Approaches such as waste recycling, composting, anaerobic digestion, refuse-derived fuel (RDF), and gas recovery from landfills are essential for waste alteration into valuable products initiatives like 'ban on single-use plastic' and 'polluters to pay' have a potential role in proper SWM in the IHR. Research and technology, capacity building, mass awareness programs, and initiatives like ‘ban on single-use plastic’ and ‘polluters to pay’ have a potential role in proper SWM in the IHR. This review highlights the current status of waste generation, the current SWM practices, and SWM challenges in the IHR. The review also discusses the possible resource recovery from waste in the IHR, corrective measures introduced by the government specific to IHR and, the way forward for improved SWM for achieving sustainable development of the IHR.


Sign in / Sign up

Export Citation Format

Share Document