Development of Cost-effective Tetra-primer Amplification Refractory Mutation System (T-ARMS) PCR for the Detection of miR-146a gene rs2910164 C/G Polymorphism in Breast Cancer

2018 ◽  
Vol 04 (01) ◽  
Author(s):  
Muhammad Afzal ◽  
Amena Rahim ◽  
Abdul Khaliq Naveed ◽  
Suhaib Ahmed ◽  
Mubin Mustafa Kiyani
2020 ◽  
Author(s):  
Md. Tanvir Islam ◽  
A. S. M. Rubayet Ul Alam ◽  
Najmuj Sakib ◽  
Md. Shazid Hasan ◽  
Tanay Chakrovarty ◽  
...  

SummaryTracing the globally circulating SARS-CoV-2 mutants is essential for the outbreak alerts and far-reaching epidemiological surveillance. The available technique to identify the phylogenetic clades through high-throughput sequencing is costly, time-consuming, and labor-intensive that hinders the viral genotyping in low-income countries. Here, we propose a rapid, simple and cost-effective amplification-refractory mutation system (ARMS)-based multiplex reverse-transcriptase PCR assay to identify six distinct phylogenetic clades: S, L, V, G, GH, and GR. This approach is applied on 24 COVID-19 positive samples as confirmed by CDC approved real-time PCR assay for SARS-CoV-2. Our multiplex PCR is designed in a mutually exclusive way to identify V-S and G-GH-GR clade variants separately. The pentaplex assay included all five variants and the quadruplex comprised of the triplex variants alongside either V or S clade mutations that created two separate subsets. The procedure was optimized in the primer concentration (0.2-0.6 µM) and annealing temperature (56-60°C) of PCR using 3-5 ng/µl cDNA template synthesized upon random- and oligo(dT)-primer based reverse transcription. The different primer concentration for the triplex and quadruplex adjusted to different strengths ensured an even amplification with a maximum resolution of all targeted amplicons. The targeted Sanger sequencing further confirmed the presence of the clade-featured mutations with another set of our designed primers. This multiplex ARMS-PCR assay is sample, cost-effective, and convenient that can successfully discriminate the circulating phylogenetic clades of SARS-CoV-2.


2017 ◽  
Vol 5 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Hemanta Kumari Chaudhary ◽  
Mitesh Shrestha ◽  
Prakash Chaudhary ◽  
Bal Hari Poudel

Multidrug-resistant tuberculosis (MDR-TB) has become a serious worldwide threat including in Nepal. MDR-TB refers to the pathological condition whereby Mycobacterium tuberculosis becomes resistant to the first line of drug treatment i.e. rifampin and isoniazid. Resistance to rifampin (RIF) is mainly caused by the mutations in the rpoB gene which codes for the β-subunit of RNA polymerase. In this study, Amplification Refractory Mutation System – Polymerase Chain Reaction (ARMS – PCR) technique has been used to detect mutations in the rpoB gene of Mycobacterium tuberculosis. Total DNA samples of 34 phenotypic MDR-TB were subjected to ARMS – PCR using three different codon specific primers (516, 526 and 531). These three codons occupy large portion of total mutation responsible for rifampin resistance. Out of the total DNA samples, all were bearing mutation in at least one of the three codons mentioned. Of those bearing mutation, the highest number had mutation in codon 531 (97.05 %) followed by codon 516 (17.64 %) and finally in codon 526 (11.76%) respectively. Hence, ARMS – PCR may be used as an alternative diagnostic technique for detection of rifampin resistance in Mycobacterium tuberculosis strains, especially for a developing country like Nepal.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 81-85


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Narayan Gautam ◽  
Bhagwati Gaire ◽  
Trishna Manandhar ◽  
Bishnu P. Marasini ◽  
Niranjan Parajuli ◽  
...  

Abstract Objectives The study was carried out to optimize the phenotypic method to characterize the sickle cell trait (SCT), sickle cell anemia (SCA), and β-thalassemia (β-TT) suspected sample from tharu community of South Western province-5, Nepal. SCT and SCA were further evaluated by genotypic method employing amplification refractory mutation system (ARMS PCR). Moreover, Glucose 6 phosphate dehydrogenase (G6PD) was estimated in those hemoglobinopathy to observe its prevalence. The accurate and reliable method can play an important role in reduction of morbidity and mortality rate. Results The 100 suspected cases were subjected to phenotypic method adopting cellulose acetate electrophoresis and genotypic method using ARMS PCR which portraits (5%) SCA positive test showing HBS/HBS, (38%) SCT positive trait HBA/HBS and (36%) cases normal HBA/HBA. β-TT (21%) cases were confirmed by electropherogram. G6PD deficiency was observed in (40%) of SCA, (18.4%) of SCT, (4.8%) of β-TT and (2.8%) in normal cases. Increased G6PD were developed only in SCT (5.3%) and β-TT (4.8%). The study highlighted sickle cell disorder (SCD) and β-TT as the most common hemoglobinopathy coexisting with G6PD deficiency. Though hemoglobinopathy sometime could be protective in malaria but G6PD deficiency can cause massive hemolysis which may exacerbate the condition.


Author(s):  
Saman SARGAZI ◽  
Milad HEIDARI NIA ◽  
Shekoufeh MIRINEJAD ◽  
Mahdiyeh MOUDI ◽  
Mahdiyeh JAFARI SHAHROUDI ◽  
...  

Background: KIF26B gene is found to play essential roles in regulating different aspects of cell proliferation and development of the nervous system. We aimed to determine if rs12407427 T/C polymorphism could affect susceptibility to schizophrenia (SZN) and breast cancer (BC), the two genetically correlated diseases. Methods: The current case-control study was performed from Aug 2018 to Dec 2018. Briefly, 159 female pathologically confirmed BC cases referring to Alzahra Hospital, Isfahan, Iran, and 102 psychologically confirmed SZN patients (60 males and 42 females) admitted to Baharan Hospital, Zahedan, Iran, were enrolled. Using the salting-out method, genomic DNA was extracted, and variants were genotyped using allele-specific amplification refractory mutation system polymerase chain reaction (ARMS-PCR) method. Results: The results revealed a significant association between the KIF26B rs12407427 codominant CT (P=0.001), CC (P=0.0001), dominant CT+CC, and recessive CC (P=0.001) genotypes with the risk of developing SZN. Significant correlations were also found regarding rs12407427 and BC susceptibility in different inheritance models, including over-dominant CT (P=0.026), dominant CT+CC (P=0.001), recessive CC (P=0.009), and codominant CT and CC (P=0.001) genotypes. The over-presence of the C allele was also correlated with an increased risk for SZN (P=0.0001) and BC (P=0.0001). Finally, computational analysis predicted that T/C variation in this polymorphism could change the binding sites in proteins involved in splicing. Conclusion: rs12407427 T/C as a de novo KIF26B variant might be a novel genetic biomarker for SZN and/or BC susceptibility in a sample of the Iranian population.


VirusDisease ◽  
2018 ◽  
Vol 29 (4) ◽  
pp. 565-568 ◽  
Author(s):  
Vikas Gupta ◽  
Vishal Chander ◽  
Soumendu Chakravarti ◽  
Gaurav Kumar Sharma ◽  
Javed Ahmed Malla ◽  
...  

2016 ◽  
Vol 46 ◽  
pp. 59-64 ◽  
Author(s):  
Vishal Chander ◽  
Soumendu Chakravarti ◽  
Vikas Gupta ◽  
Sukdeb Nandi ◽  
Mithilesh Singh ◽  
...  

2019 ◽  
Author(s):  
Narayan Gautam ◽  
Bhagwati Gaire ◽  
Trishna Manandhar ◽  
Bishnu P Marasini ◽  
Niranjan Parajuli ◽  
...  

Abstract Objectives: The study was carried out to optimize the phenotypic method to characterize the sickle cell trait (SCT), sickle cell anaemia (SCA) and β-thalassemia (β-TT) suspected sample from tharu community of South Western province-5, Nepal. SCT and SCA were further evaluated by genotypic method employing amplification refractory mutation system (ARMS PCR). Moreover, Glucose 6 Phosphate Dehydrogenase (G6PD) was estimated in those hemoglobinopathy to observe its prevalence. The accurate and reliable method can play an important role in reduction of morbidity and mortality rate. Results: The 100 suspected cases were subjected to phenotypic method adopting cellulose acetate electrophoresis and genotypic metod using ARMS PCR which portraits (5%) SCA positive test showing HBS/HBS, (38%) SCT positive trait HBA/HBS and (36%) cases normal HBA/HBA. β-TT (21%) cases were confirmed by electropherogram. G6PD deficiency was observed in (40%) of SCA, (18.4%) of SCT, (4.8%) of β-TT and (2.8%) in normal cases. Increased G6PD were developed only in SCT (5.3 %) and β-TT (4.8%). The study highlighted sickle cell disorder (SCD) and β-TT as the most common hemoglobinopathy coexisting with G6PD deficiency. Though hemoglobinopathy sometime could be protective in malaria but G6PD deficiency can cause massive hemolysis which may exacerbate the condition.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 910 ◽  
Author(s):  
Song ◽  
Li ◽  
Fei ◽  
Zhang ◽  
Pan ◽  
...  

As a gene contributing to spermatogenesis, the Boule gene (also called Boll), whose mutations result in azoospermia and sterility of flies and mice, was conserved in reductional maturation divisions. However, in goats, the polymorphisms of Boule, especially with regard to their fundamental roles in female reproduction traits, are still unknown. Therefore, the aims of this study were to detect a potential mutation (rs661484476: g.7254T>C) located in intron 2 of the Boule gene by tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) and to explore its potential association with the litter size of Shaanbei White-Cashmere goats (SBWGs). In this study, g.7254T>C was firstly detected. The TT genotype was the dominant genotype in the single-lamb group, and T was also the dominant allele in all tested groups. Additionally, the detected locus displayed moderate polymorphism with polymorphism information content (PIC) values among all studied goats ranging from 0.303 to 0.344. Notably, according to the χ2 test, the distribution differences for the genotypic frequencies between the single- and multi-lamb groups was significant (p = 0.014). Furthermore, the polymorphisms of the goat Boule gene were significantly associated with the goat litter size in SBWGs (p < 0.05), which indicated that g.7254T>C could be a potential marker in the marker-assisted selection process for potential litter size in goats. These results also indicated that the Boule gene might exercise important functions in female goat reproduction, which provided new insight for female goat breeding and could accelerate the process of goat breeding.


Sign in / Sign up

Export Citation Format

Share Document