scholarly journals Live-cell Imaging and Analysis of Germline Stem Cell Mitosis in Caenorhabditis elegans

BIO-PROTOCOL ◽  
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Réda Zellag ◽  
Yifan Zhao ◽  
Abigail Gerhold
BIO-PROTOCOL ◽  
2020 ◽  
Vol 10 (20) ◽  
Author(s):  
Gunar Fabig ◽  
Falko Löffler ◽  
Christian Götze ◽  
Thomas Müller-Reichert

2020 ◽  
Author(s):  
Tien Minh Le ◽  
Naoki Morimoto ◽  
Nhung Thi My Ly ◽  
Toshihito Mitsui ◽  
Sharon Claudia Notodihardjo ◽  
...  

Abstract Background: Apoptosis was reported to take crucial role in mesenchymal stem cell (MSC)-mediated immunomodulation, in which apoptotic MSCs were shown to be superior compared to living MSCs. Furthermore, extracellular vesicles (Evs) derived from MSCs were revealed more specific advantages for patient safety such as lower propensity to trigger innate and adaptive immune responses. As a safety and simple operation, high hydrostatic pressure (HHP), a physical technique that uses only fluid pressure to inactivate cells or tissues, has been developed and applied in a lot of field of biosciences, including biotechnology, biomaterials, or tissue engineering. Methods: MSCs isolated from human bone marrow were suspended cultured in appropriate medium and subjected to pressurization at 50 MPa for 36 h. Then cells were collected and investigated apoptotic pathway by transmission electron microscopy (TEM), phosphatidylserine membrane translocations, cleaved caspase-3/7 and terminal deoxy-nucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Besides, viability assays and live cell imaging were also used for assessement of cell survival after pressurization. Results: We found that HHP at 50 MPa for ≥36 h completely induced MSC death by Live/Dead assay, live cell imaging and WST-8 assay up to 7 days after pressurization. The large amount of apoptotic MSCs death was found based on morphological changes in TEM, phosphatidylserine exposure, caspase activation and detection of DNA fragmentations via TUNEL staining. Conclusions: In the current study, our data revealed that HHP treatment was convenient processing which safety and effectively induced MSCs undergo apoptosis. Especially, by capable of manufacture expanding, this technique might provide numbers of manipulated products using for industrial cell-based therapies.


2017 ◽  
Vol 19 (8) ◽  
pp. 1109-1118 ◽  
Author(s):  
Xin Mei ◽  
Yin-Sheng Chen ◽  
Fu-Rong Chen ◽  
Shao-Yan Xi ◽  
Zhong-Ping Chen

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 163 ◽  
Author(s):  
Maximilian Haertinger ◽  
Tamara Weiss ◽  
Anda Mann ◽  
Annette Tabi ◽  
Victoria Brandel ◽  
...  

Recent studies showed a beneficial effect of adipose stem cell-derived extracellular vesicles (ADSC-EVs) on sciatic nerve repair, presumably through Schwann cell (SC) modulation. However, it has not yet been elucidated whether ADSC-EVs exert this supportive effect on SCs by extracellular receptor binding, fusion to the SC membrane, or endocytosis mediated internalization. ADSCs, ADSC-EVs, and SCs were isolated from rats and characterized according to associated marker expression and properties. The proliferation rate of SCs in response to ADSC-EVs was determined using a multicolor immunofluorescence staining panel followed by automated image analysis. SCs treated with ADSC-EVs and silica beads were further investigated by 3-D high resolution confocal microscopy and live cell imaging. Our findings demonstrated that ADSC-EVs significantly enhanced the proliferation of SCs in a time- and dose-dependent manner. 3-D image analysis revealed a perinuclear location of ADSC-EVs and their accumulation in vesicular-like structures within the SC cytoplasm. Upon comparing intracellular localization patterns of silica beads and ADSC-EVs in SCs, we found striking resemblance in size and distribution. Live cell imaging visualized that the uptake of ADSC-EVs preferentially took place at the SC processes from which the EVs were transported towards the nucleus. This study provided first evidence for an endocytosis mediated internalization of ADSC-EVs by SCs and underlines the therapeutic potential of ADSC-EVs in future approaches for nerve regeneration.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 268
Author(s):  
Parivash Nouri ◽  
Anja Zimmer ◽  
Stefanie Brüggemann ◽  
Robin Friedrich ◽  
Ralf Kühn ◽  
...  

Advances in the regenerative stem cell field have propelled the generation of tissue-specific cells in the culture dish for subsequent transplantation, drug screening purposes, or the elucidation of disease mechanisms. One major obstacle is the heterogeneity of these cultures, in which the tissue-specific cells of interest usually represent only a fraction of all generated cells. Direct identification of the cells of interest and the ability to specifically isolate these cells in vitro is, thus, highly desirable for these applications. The type VI intermediate filament protein NESTIN is widely used as a marker for neural stem/progenitor cells (NSCs/NPCs) in the developing and adult central and peripheral nervous systems. Applying CRISPR-Cas9 technology, we have introduced a red fluorescent reporter (mScarlet) into the NESTIN (NES) locus of a human induced pluripotent stem cell (hiPSC) line. We describe the generation and characterization of NES-mScarlet reporter hiPSCs and demonstrate that this line is an accurate reporter of NSCs/NPCs during their directed differentiation into human midbrain dopaminergic (mDA) neurons. Furthermore, NES-mScarlet hiPSCs can be used for direct identification during live cell imaging and for flow cytometric analysis and sorting of red fluorescent NSCs/NPCs in this paradigm.


Author(s):  
Maria Navas-Moreno ◽  
Tatyana Chernenko ◽  
Majid Mehrpouyen ◽  
Ming Yan ◽  
Demet Candas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document