Approaches to modeling occurrence of rolling contact fatigue damages in rails

2018 ◽  
Vol 77 (5) ◽  
pp. 259-268 ◽  
Author(s):  
S. M. Zakharov ◽  
E. V. Torskaya

Rolling contact-fatigue damages of rails along with their wear are the most common types of rail defects. In recent years, there have been significant changes in the distribution of rolling contact fatigue damages of rails especially on railways operating under heavy haul conditions.This paper is devoted to the overview of approaches to modeling of the occurrence of rolling contact fatigue (RCF) damages on working surfaces of rails. Four types of such approaches to modeling are considered. The first is based on the methods of contact mechanics. To realize it, the vehicle movement on the characteristic sections of the track is modeled, the forces acting in contact are determined, the contact problem is solved, and the values of the linear criterion of contact fatigue damage are determined. The required characteristics of rolling contact fatigue of the rail material are established on the basis of laboratory tests. The second approach uses the diagram of the adaptability of rail material to cyclic loads, proposed by K. Johnson, established on the basis of laboratory tests. The third approach uses criteria that have the physical meaning of the energy released at the contact as an index of the product of the tangential force in contact and relative slippage. In the fourth approach predicting the accumulation of plastic deformation under conditions of cyclic loading is performed on the basis of a series of standard tests of rail steels, including in the welded joint zone, and finite element modeling. In addition, there is also a probabilistic model, based on the assumption that it is possible to transfer the results of the RCF damage of rails on the experimental section of the road to any other site.As the conclusion the authors formulated directions for further studies on the formation and development of surface rolling contact fatigue defects in rails.

Author(s):  
Mahdi Mehrgou ◽  
Asghar Nasr

Track properties such as rail inclination, cant and gage width have significant effects on the shape and size of the contact area, actual rolling radius and also on the contact forces. These effects have an important role on rolling contact fatigue (RCF) which is known to be the main reason for large portion of wheel set failures and expenses. In this study the wheel/rail dynamic interaction of an Iranian railway passenger wagon under different track features are investigated through simulations using ADAMS\Rail commercial software. The calculated results regarding contact load data and contact properties of the wheel and rail are used for fatigue analysis to calculate RCF damage to the wheels using damage criteria based on previous studies. Two major parameters believed to have serious roles on RCF are the contact stress and the tangential force in the contact patch. These parameters are obtained from vehicle dynamic simulation studies. This paper describes and compares effects of different track geometries in curved and tangent tracks on RCF of three different wheel profiles S1002, P8 and IR1002. It is to identify which combinations of wheel load, wheel and rail profiles and vehicle dynamic characteristics cause RCF more severely.


Author(s):  
Matthias Asplund ◽  
Stephen M Famurewa ◽  
Wolfgang Schoech

This article summarizes the experiences gained at the Nordic heavy haul line “Malmbanan” located in Northern Sweden and Norway during the years 2007 to 2015 and the resulting best practice. Unique long-term information of field trials and monitoring from the on-going development for maintenance of rail and wheel has been described. The reported results come from the rail profile measurements using MiniProf and HC-recordings with Eddy-current devices and visual inspection on 43 test sections. The monitoring has been continuous since the project started, to reveal a deep insight into the complex wheel–rail interaction and provide understanding of the effect of applying optimized specifications. This was particularly important in view of the increasing traffic load that contributed to doubling of the yearly grinding campaigns. This article presents in particular the new MB5 profile, the wear rate behaviour between two different curves, impacts of gauge widening on rail rolling contact fatigue and the speed of gauge widening as well as the seasonal impact on the crack propagation. The presently applied maintenance strategy is discussed together with other experiences. The article finishes with some conclusions and an outlook into further work.


Author(s):  
Mehdi Mehrgou ◽  
Asghar Nasr

Wheel lateral profile has considerable effects on the wheel/rail dynamic interactions such as the shape and size of the contact area, instantaneous rolling radius and contact forces. Theses themselves have indirectly important roles on the rolling contact fatigue (RCF) which is known to be the main reason for large portion of rail maintenance costs. In this study the wheel/rail dynamic interaction of an Iranian railway passenger wagon under three different wheel profiles are investigated using ADAMS\Rail commercial simulation software. The dynamic simulation results regarding contact load and contact features of the wheel and rail are used for fatigue analysis to calculate RCF damage to the rail using reliable damage criteria reported in the literature. The two major parameters having serious roles on the RCF are believed to be the contact stress and the tangential force at the contact patch. These parameters are obtained from vehicle dynamic simulation studies. This paper describes and compares the effects of three different wheel profiles known as S1002, P8 and IR1002 on the rail RCF in both the curved and tangent sections of a track. The primary results clearly identify the effects of wheel profile on the RCF.


Author(s):  
Xin Lu ◽  
Tony W Makowsky ◽  
Donald T Eadie ◽  
Kevin Oldknow ◽  
Jilian Xue ◽  
...  

Shuohuang Railway (SHR) is one of the major coal carriers in China, with a total network length of 590 km running from Shenchi to Huanghua. Significant increases in annual operating tonnage have generated accelerated rail wear and rolling contact fatigue (RCF) growth problems for many sharper/lower radius curves. In order to address these rail problems, SHR is interested in the state-of-the-art total friction management (TFM) technology currently deployed by some North American heavy haul freight railroads and is evaluating the impact of TFM via a field trial at SHR’s Yuanping subdivision. This paper presents an evaluation of the effect of TFM, which includes both wayside gauge face lubrication and wayside application of a thin film top of rail friction modifier on control of lateral forces, rail wear and RCF.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Arthur Francisco ◽  
Houssein Abbouchi ◽  
Bernard Villechaise

Despite the numerous experimental works on rolling contact fatigue, dealing with two-disk contacts, some phenomena still remain badly understood. Most of the test benches, used for that purpose, impose the rotational speeds to the disks: global slipping occurs and the tangential force is measured. Even if this configuration is found in some mechanical contacts, it does not reflect situations, where only microslipping occurs with high tangential loads. For these reasons, an original bench has been designed: a specimen disk rotates a braked stainless steel disk under a normal load N. The tangential load T, due to the braked disk, is set below the global slipping value; the specimen disks are transparent for the cracks observation and brittle to avoid any plasticity complication. A typical run consists in carrying out a succession of steps of increasing the number of cycles. Each step ends with several measurements on the cracks: their counting and their width and depth measurements. The results are divided in two categories: general observations and quantitative results. The most evident observation concerns the crack shape since it propagates along an ellipse on the contact path. Furthermore, the direction of propagation inside the disk is perpendicular to the surface. Lastly, a regular primary network of well-defined cracks is observed with cracks less marked. Concerning the effects of varying loads, the higher the T, the faster the cracks initiate and propagate because of a higher tensile stress state. However, these effects can be partly overridden by N beneath the contact path. As the disk material is brittle, the crack behavior is quite similar to the one observed on metallic specimens. Even if the results are obtained in an epoxy resin, a reasonable transposition is possible. The disk transparency makes it possible to quantify the cracks growth and to propose original 3D photographs of the cracks.


Materia Japan ◽  
2011 ◽  
Vol 50 (3) ◽  
pp. 123-125
Author(s):  
Tatsumi Kimura ◽  
Minoru Honjo ◽  
Shinji Mitao ◽  
Mineyasu Takemasa ◽  
Hiroshi Ishikawa

Author(s):  
Sabri Cakdi ◽  
Scott Cummings ◽  
John Punwani

Railway wheels and rails do not achieve full wear life expectancy due to the combination of wear, plastic deformation, and surface, subsurface, and deep subsurface cracks. Sixty-seven percent of wheel replacement and maintenance in North America is associated with tread damage [1]. Spalling and shelling are the two major types of wheel tread damage observed in railroad operations. Spalling and slid flat defects occur due to skidded or sliding wheels caused by, in general, unreleased brakes. Tread shelling (surface or shallow subsurface fatigue) occurs due to cyclic normal and traction loads that can generate rolling contact fatigue (RCF). Shelling comprises about half of tread damage related wheel replacement and maintenance. The annual problem size associated with wheel tread RCF is estimated to be in the tens of millions of dollars. The total cost includes maintenance, replacement, train delays and fuel consumption. To study the conditions under which RCF damage accumulates, a 36-ton axle load aluminum body coal car was instrumented with a high accuracy instrumented wheelset (IWS), an unmanned data acquisition (UDAC) system, and a GPS receiver. This railcar was sent to coal service between a coal mine and power plant, and traveled approximately 1,300 miles in the fully loaded condition on each trip. Longitudinal, lateral, and vertical wheel-rail forces were recorded continuously during four loaded trips over the same route using the same railcar and instrumentation. The first two trips were conducted with non-steering 3-piece trucks and the last two trips were conducted with passive steering M-976 compliant trucks to allow comparison of the wheel load environment and RCF accumulation between the truck types. RCF initiation predictions were made using “Shakedown Theory” [2]. Conducting two trips with each set of trucks allowed for analysis of the effects of imbalance speed conditions (cant deficiency or excess cant) at some curves on which the operating speeds varied significantly between trips.


Sign in / Sign up

Export Citation Format

Share Document