Consideration of the temperature factor of atmospheric air when determining standard consumption of fuel and energy resources for train traction

2018 ◽  
Vol 77 (6) ◽  
pp. 375-381
Author(s):  
K. M. Popov

Abstract. Influence of air temperature on the consumption of fuel and energy resources (FER) on train traction is due to a number of physical laws. The extent of this effect is specified in the Rules for Traction Settlement (RTS). At the same time, when rationing FER consumption for train traction, a specialized methodical base is used, which involves a different approach to accounting for the effect of temperature on FER consumption for train traction. At the same time in different documents of this base, the effects of low temperature on the absolute and specific consumption of fuel and energy resources on train traction are taken into account in a different way, which is due to the lack of consensus among specialists on the way this factor is taken into account. Specialists of JSC “VNIIZhT” carried out an analysis of a significant amount of driver’s routes data, results of which showed that the dependence of the specific flow rate on temperature, on the basis of which the corresponding influence coefficient is determined, needs to be periodically updated. In addition, when technically standardizing the consumption of fuel and energy resources (for the locomotive crew work site), the temperature effect coefficients need to be calculated for a specific work area and direction of motion on it, while using the average network coefficient values will lead to errors. When calculating additional flow of fuel and energy from the effect of temperature for electric multiple units (EMU), the equations of regression dependencies should be used, obtained by statistical processing of data on temperature changes and specific consumption of fuel and energy resources for EMU and determined for each series of EMU when working on a particular suburban area.

Author(s):  
Yiqun Huang ◽  
Pawan Singh Takhar ◽  
Juming Tang ◽  
Barry G Swanson

Rheological behaviors of high acyl (HA) gellan are not well understood partially because of its relatively late commercialization compared to low acyl gellan. The objective of this study was to investigate the effect of temperature (5-30 °C), calcium (0, 1 and 10 mM) and gellan concentrations (0.0044-0.1000% w/v) on the flow behaviors of high acyl gellan aqueous solutions using rheological tests. Gellan solutions with 0 or 1 mM added Ca++ exhibited shear thinning behavior at gellan concentrations above 0.0125%. The influence of temperature on apparent viscosity (shear rate, 100 s-1) of gellan solutions can be described with an Arrhenius relationship. The apparent viscosity of gellan solution at low concentrations was more sensitive to temperature changes. The addition of Ca++ led to a decrease in flow resistance for a dilute gellan solution (<0.0125%), but an increased resistance for a relatively concentrated gellan solution (>0.0125%).


2020 ◽  
Vol 15 ◽  
pp. 65
Author(s):  
Salisu M. Garba ◽  
Usman A. Danbaba

In this study, a non-autonomous (temperature dependent) and autonomous (temperature independent) models for the transmission dynamics of malaria in a population are designed and rigorously analysed. The models are used to assess the impact of temperature changes on various control strategies. The autonomous model is shown to exhibit the phenomenon of backward bifurcation, where an asymptotically-stable disease-free equilibrium (DFE) co-exists with an asymptotically-stable endemic equilibrium when the associated reproduction number is less than unity. This phenomenon is shown to arise due to the presence of imperfect vaccines and disease-induced mortality rate. Threshold quantities (such as the basic offspring number, vaccination and host type reproduction numbers) and their interpretations for the models are presented. Conditions for local asymptotic stability of the disease-free solutions are computed. Sensitivity analysis using temperature data obtained from Kwazulu Natal Province of South Africa [K. Okuneye and A.B. Gumel. Mathematical Biosciences 287 (2017) 72–92] is used to assess the parameters that have the most influence on malaria transmission. The effect of various control strategies (bed nets, adulticides and vaccination) were assessed via numerical simulations.


2019 ◽  
Vol 298 ◽  
pp. 00009
Author(s):  
M.S. Ostapenko ◽  
M.A. Popova ◽  
A.M. Tveryakov

In this paper, we evaluate the method of finding the relative error of gas flow meters taking into account the influence coefficients. A literature analysis was carried out, which showed that flow meters are used at oil and gas enterprises, which show its metrological characteristic, showing specific values of gas flow in operating conditions. Various types of gas flow meters are considered, with a description of the quality indicators of the devices. An additional error was investigated depending on changes in operating conditions. The calculations of the relative error of the meter taking into account the limiting values of the additional errors indicated in the technical documentation, as well as calculations taking into account the coefficients of influence under operating conditions. Based on the obtained values of the influence coefficients, graphs were constructed on which the effect of temperature and pressure on the error was determined. The article provides tabular values of the influence coefficients for petroleum gas, a conclusion is drawn on the applicability of this method.Oil and gas industry have a great influence on development of national economy in our country. Oil and gas have a leading position in energy industry and they are more effective and energy-intense in comparison with other natural substances.


1999 ◽  
Vol 56 (8) ◽  
pp. 1370-1375
Author(s):  
Even H Jørgensen ◽  
Johannes Wolkers

In this study, the time-dependent P450 response to oral benzo[a]pyrene exposure at 1 and 10°C was investigated in winter- and summer-acclimated Arctic char (Salvelinus alpinus). In both seasons, a strong induction of CYP1A activities and protein levels (measured only in the winter experiment) were seen at both 1 and 10°C. At 1°C, the responses were delayed and more long-lasting than at 10°C. No within-season difference between 1 and 10°C in the magnitude of the induction response was found, but due to elevated baseline CYP1A activities, the induction response was seven times lower in winter- as compared with the response in summer-acclimated Arctic char. The results show that the CYP1A enzymes of the Arctic char respond to temperature changes in a compensatory way, and they are promising with respect to the applicability of the P450 enzyme system of the Arctic char as a biomarker for monitoring polycyclic aromatic hydrocarbon contamination in high-latitude environments. More studies are needed, however, to reveal seasonal differences in the biomarker response to pollutants.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 471-474 ◽  
Author(s):  
Rodney G. Lym ◽  
Calvin G. Messersmith

Temperature changes prior to picloram application affects its activity in leafy spurge. Absorption of14C picloram was directly correlated with temperature changes; each 1 C increase in air temperature 24 h before treatment resulted in a 1% increase of14C-picloram absorption in leafy spurge and vice versa. The greatest14C-picloram absorption averaged 47% of applied14C when the temperature increased from 18 C to 24 or 30 C 24 h before treatment compared to 33% when temperatures were constant. Translocation of14C picloram was more sensitive than absorption to temperature changes with 4.3 and 1% of applied14C-picloram translocated to the roots when the plants were maintained at 12 and 30 C, respectively. Even though absorption increased directly with temperature,14C-picloram translocation to the root system declined as temperature increased.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950155
Author(s):  
Yaobing Zhao ◽  
Henghui Lin ◽  
Lincong Chen ◽  
Chenfei Wang

This paper concerns with a suspended cable in thermal environments under bi-frequency harmonic excitations, with a focus placed on the effect of temperature changes on one type of simultaneous resonance. First, the nonlinear equation of motion in thermal environments is obtained for the in-plane displacement of the cable. Then, the Galerkin method is employed to reduce the partial differential equation to an ordinary one. Second, based on the discretized form of the governing equation, the method of multiple scales is employed to obtain the second-order approximate solutions, with the stability characteristics determined. Third, numerical results are presented by using the perturbation method, together with numerical integration by the following means: frequency-response curves, time-displacement curves, phase-plane diagrams, and Poincare sections. The direct integration method is utilized to verify the results obtained by the perturbation method, while revealing more nonlinear dynamic behaviors induced by temperature changes. Both the softening and/or hardening behaviors, and the switching between them are observed for the cable in thermal environments. The response amplitude of the cable is very sensitive to temperature changes, but the number of circles in the phase diagrams and the number of cluster points in Poincaré sections is independent of the thermal effects in most cases. Finally, the vibration characteristics of the cable for different thermal expansion coefficients and temperature-dependent Young’s moduli are also investigated.


Sign in / Sign up

Export Citation Format

Share Document