Anti-Inflammatory Potential of Marine Derived Compounds Xyloketal B and CEP 1347 for the Treatment of Ischemic Stroke

2020 ◽  
Vol 13 (2) ◽  
pp. 389-400
Author(s):  
Jemmy Christy. H
2021 ◽  
Vol 22 (8) ◽  
pp. 4207
Author(s):  
Nikola Tułowiecka ◽  
Dariusz Kotlęga ◽  
Andrzej Bohatyrewicz ◽  
Małgorzata Szczuko

Introduction: Cardiovascular diseases including stroke are one of the most common causes of death. Their main cause is atherosclerosis and chronic inflammation in the body. An ischemic stroke may occur as a result of the rupture of unstable atherosclerotic plaque. Cardiovascular diseases are associated with uncontrolled inflammation. The inflammatory reaction produces chemical mediators that stimulate the resolution of inflammation. One of these mediators is lipoxins—pro-resolving mediators that are derived from the omega-6 fatty acid family, promoting inflammation relief and supporting tissue regeneration. Aim: The aim of the study was to review the available literature on the therapeutic potential of lipoxins in the context of ischemic stroke. Material and Methods: Articles published up to 31 January 2021 were included in the review. The literature was searched on the basis of PubMed and Embase in terms of the entries: ‘stroke and lipoxin’ and ‘stroke and atherosclerosis’, resulting in over 110 articles in total. Studies that were not in full-text English, letters to the editor, and conference abstracts were excluded. Results: In animal studies, the injection/administration of lipoxin A4 improved the integrity of the blood–brain barrier (BBB), decreased the volume of damage caused by ischemic stroke, and decreased brain edema. In addition, lipoxin A4 inhibited the infiltration of neutrophils and the production of cytokines and pro-inflammatory chemokines, such as interleukin (Il-1β, Il-6, Il-8) and tumor necrosis factor-α (TNF-α). The beneficial effects were also observed after introducing the administration of lipoxin A4 analog—BML-111. BML-111 significantly reduces the size of a stroke and protects the cerebral cortex, possibly by reducing the permeability of the blood–brain barrier. Moreover, more potent than lipoxin A4, it has an anti-inflammatory effect by inhibiting the production of pro-inflammatory cytokines and increasing the amount of anti-inflammatory cytokines. Conclusions: Lipoxins and their analogues may find application in reducing damage caused by stroke and improving the prognosis of patients after ischemic stroke.


2007 ◽  
Vol 8 (1) ◽  
pp. 199
Author(s):  
S. Antonopoulos ◽  
M. Mylonopoulou ◽  
A. Charamis ◽  
S. Geracari ◽  
C. Poulopoulou ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Youngjeon Lee ◽  
Sang-Rae Lee ◽  
Sung S. Choi ◽  
Hyeon-Gu Yeo ◽  
Kyu-Tae Chang ◽  
...  

Inflammation has a pivotal role in the pathogenesis of ischemic stroke, and recent studies posit that inflammation acts as a double-edged sword, not only detrimentally augmenting secondary injury, but also potentially promoting recovery. An initial event of inflammation in ischemic stroke is the activation of microglia, leading to production of both pro- and anti-inflammatory mediators acting through multiple receptor signaling pathways. In this review, we discuss the role of microglial mediators in acute ischemic stroke and elaborate on preclinical and clinical studies focused on microglia in stroke models. Understanding how microglia can lead to both pro- and anti-inflammatory responses may be essential to implement therapeutic strategies using immunomodulatory interventions in ischemic stroke.


Author(s):  
D. Di Raimondo ◽  
A. Tuttolomondo ◽  
R. Di Sciacca ◽  
L. Vaccarino ◽  
L. Scola ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Luciano S. A. Capettini ◽  
Silvia Q. Savergnini ◽  
Rafaela F. da Silva ◽  
Nikos Stergiopulos ◽  
Robson A. S. Santos ◽  
...  

Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1) and type 2 (CB2) transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role ofCB1andCB2receptors in ischemic stroke. WhileCB1receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, theCB2activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke.


2015 ◽  
Vol 13 (5) ◽  
pp. 708-718 ◽  
Author(s):  
P. García-Poza ◽  
F. J. de Abajo ◽  
M. J. Gil ◽  
A. Chacón ◽  
V. Bryant ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Munehisa Shimamura ◽  
Hironori Nakagami ◽  
Hideo Shimizu ◽  
Kouji Wakayama ◽  
Tomohiro Kawano ◽  
...  

Microglial healing peptide 1, “MHP1”, is a newly developed synthetic peptide composed of the DE and a part of the EF loop of the receptor activator of nuclear factor-кB (NFκB) ligand (RANKL). Our previous report demonstrated that MHP1 significantly inhibits Toll-like receptor (TLR) 2- and 4-induced inflammation in microglia/macrophages through RANK signaling without osteoclast activation. However, its inhibitory effects on ischemic stroke when administered intravenously have not been clarified. First, we examined whether MHP1 could penetrate the brain parenchyma. Intravenous injection of FITC-conjugated MHP1 demonstrated that MHP1 could cross the blood-brain-barrier in peri-infarct regions, but not in intact regions. Because MHP1 in the parenchyma was reduced at 60 minutes after injection, we speculated that continuous injection was necessary to achieve the therapeutic effects. To check the possible deactivation of MHP1 by continuous injection, the anti-inflammatory effects were checked in MG6 cells after incubation in 37°C for 24 hours. Although the inhibitory effects for IL6 and TNFα were reduced compared to nonincubated MHP1, its anti-inflammatory efficacy remained, indicating that continuous administration with pump was possible. The single and successive continuous administration of MHP1 starting from 4 or 6 hours after cerebral ischemia successfully reduced infarct volume and prevented the exacerbation of neurological deficits with reduced activation of microglia/macrophages and inflammatory cytokines. Different from recombinant RANKL, MHP1 did not activate osteoclasts in the paralytic arm. Although further modification of MHP1 is necessary for stabilization, the MHP1 could be a novel agent for the treatment ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document