scholarly journals Vibration Measurement of a Screening Machine

2020 ◽  
Vol 5 (3) ◽  
pp. 116-123
Author(s):  
László Rónai ◽  
József Lénárt ◽  
Tamás Szabó

In this paper we use linear vibration approach to make a model of a horizontal vibration screen, which can be applied at gravel pit in order to perform separation operation of the wet gravel particles. The model can produce the natural frequencies of the system, which are useful in the adjustment of the angular velocity of the vibration exciter. A laser triangulation unit is well applicable to measure peak-to-peak amplitude of the working vibration screen. Comparison has been performed between the results of the simulation and the measurements.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Yang ◽  
Yu Fu ◽  
Jianmin Yuan ◽  
Min Guo ◽  
Keyu Yan ◽  
...  

The vibration-based damage identification method extracts the damage location and severity information from the change of modal properties, such as natural frequency and mode shape. Its performance and accuracy depends on the measurement precision. Laser Doppler vibrometer (LDV) provides a noncontact vibration measurement of high quality, but usually it can only do sampling on a single point. Scanning LDV is normally used to obtain the mode shape with a longer scanning time. In this paper, a damage detection technique is proposed using a self-synchronizing multipoint LDV. Multiple laser beams with various frequency shifts are projected on different points of the object, reflected and interfered with a common reference beam. The interference signal containing synchronized temporal vibration information of multiple spatial points is captured by a single photodetector and can be retrieved in a very short period. Experiments are conducted to measure the natural frequencies and mode shapes of pre- and postcrack cantilever beams. Mode shape curvature is calculated by numerical interpolation and windowed Fourier analysis. The results show that the artificial crack can be identified precisely from the change of natural frequencies and the difference of mode shape curvature squares.


2019 ◽  
Vol 30 (14) ◽  
pp. 2099-2111 ◽  
Author(s):  
Huilu Bao ◽  
Jianming Wen ◽  
Kang Chen ◽  
Jijie Ma ◽  
Dan Lei ◽  
...  

This article proposes an inertial piezoelectric actuator with hybrid design of asymmetrically clamping structures and a bias unit for the achievement of large angular velocity and high resolution. To investigate the influence of asymmetrical clamp and bias unit on the driving performance, two types of actuators were fabricated and tested. Combined effects from asymmetrical clamp and bias unit contribute to type A, while their subtractive effect is applied to type B. Using a scanning laser vibrometer, experiments were conducted to analyze the characteristics of the angular displacement and corresponding velocity. It is indicated that the measured first-order natural frequencies for above two types are 13.828 and 14.141 Hz, which agrees well with the simulation results of 16.666 and 17.379 Hz, respectively. Besides, compared with the actuators with simple asymmetrical clamping structure or bias unit, this hybrid actuator can obtain an angular velocity 6.87 rad/s at 80 V and 16 Hz and a resolution of 2.80 μrad under a square signal of 20 V and 1 Hz and an offset distance of −22 mm. As a result, the proposed actuators can achieve large angular velocity and high resolution, which is potentially applicable to quick positioning with high accuracy.


2000 ◽  
Vol 122 (4) ◽  
pp. 376-383 ◽  
Author(s):  
Albert C. J. Luo ◽  
C. D. Mote,

The response and natural frequencies for the linear and nonlinear vibrations of rotating disks are given analytically through the new plate theory proposed by Luo in 1999. The results for the nonlinear vibration can reduce to the ones for the linear vibration when the nonlinear effects vanish and for the von Karman model when the nonlinear effects are modified. They are applicable to disks experiencing large-amplitude displacement or initial flatness and waviness. The natural frequencies for symmetric and asymmetric responses of a 3.5-inch diameter computer memory disk as an example are predicted through the linear theory, the von Karman theory and the new plate theory. The hardening of rotating disks occurs when nodal-diameter numbers are small and the softening of rotating disks occurs when nodal-diameter numbers become larger. The critical speeds of the softening disks decrease with increasing deflection amplitudes. [S0739-3717(00)02004-3]


2011 ◽  
Vol 94-96 ◽  
pp. 1633-1637
Author(s):  
De Liang Chen ◽  
Wen Ting Wang ◽  
Feng Liu

Using the theory of nonlinear elastic mechanics and fracture mechanics, the equation of motion governing equation of cracked beam is derived by the energy method, and solved with separation method of variables. Vibration analysis method based on the energy principle in this paper is proved feasible.Through numerical analysis, the effects of structural damping, crack location and depth on natural frequencies of linear vibration is investigated.


Author(s):  
Albert C. J. Luo ◽  
C. D. Mote

Abstract The response, natural frequencies for the linear and nonlinear vibrations of rotating disks are given analytically through the Luo and Mote’s plate theory of 1998. The results for the nonlinear vibration can reduce to the ones for the linear vibration when the nonlinear effects vanish, and they are applicable to disks experiencing large-amplitude displacement or initial flatness and waviness. The natural frequencies for symmetric and asymmetric responses of a 3.5-inch diameter computer memory disk as an example are predicted through the linear theory, the von Karman theory and the new plate theory. The hardening of rotating disks occurs when nodal-diameter numbers are small and the softening of rotating disks occurs when nodal-diameter numbers becomes larger. The critical speeds of softening disks decrease with increasing deflection amplitudes.


2002 ◽  
Vol 124 (3) ◽  
pp. 154-162 ◽  
Author(s):  
Pushkar N. Jogi ◽  
John D. Macpherson ◽  
Michael Neubert

Vibrations generated in a drill string while drilling generally lead to a reduction in drilling efficiency and often cause premature failure of drill string components and bit damage. It is also known that lateral vibrations, in particular, are responsible for most measurement-while-drilling (MWD) tool failures while drilling. One way to increase drilling efficiency and avoid tool damage is to monitor and analyze drilling vibrations so that drilling parameters can be adjusted while drilling to reduce such vibrations. An alternative method is to analyze and determine the natural frequencies of the bottom-hole assembly (BHA) so that resonant conditions caused by various excitation mechanisms in the drill string can be avoided. Even though models have been developed in the past in the drilling industry to determine the natural frequencies of a BHA, few attempts have been made to demonstrate that such models do actually help reduce vibrations or failures. This paper deals with the process of field validation of model-derived frequencies for axial, torsional and lateral vibrations. The results presented in this paper are based on the analysis of drilling data from a field test using downhole vibration measurement sensors. The downhole measurements included X and Y bending moments, axial acceleration, dynamic weight-on-bit, dynamic torque, and X and Y-axis magnetometers mounted in an MWD sub. The data analysis demonstrates that the natural frequencies predicted by the models match well with actual field (measured) values at the locations of interest, particularly for lateral vibrations. This analysis therefore shows that model derived results can be used with a degree of confidence to help avoid resonant conditions in a BHA while drilling and to help reduce failures.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Bashar K. Hammad

We present a methodology to calculate analytically the mode shapes and corresponding frequencies of mechanically coupled microbeam resonators. To demonstrate the methodology, we analyze a mechanical filter composed of two beams coupled by a weak beam. The boundary-value problem (BVP) for the linear vibration problem of the coupled beams depends on the number of beams and the boundary conditions of the attachment points. This implies that the system of linear homogeneous algebraic equations becomes larger as the array of resonators becomes complicated. We suggest a method to reduce the large system of equations into a smaller system. We reduce the BVP composed of five equations and twenty boundary conditions to a set of three linear homogeneous algebraic equations for three constants and the frequencies. This methodology can be simply extended to accommodate any configuration of mechanically coupled arrays. To validate our methodology, we compare our analytical results to these obtained numerically using ANSYS. We found that the agreement is excellent. We note that the weak coupling beam splits the frequency of the single resonator into two close frequencies. In addition, the effect of the coupling beam location on the natural frequencies, and hence the filter behavior, is investigated.


Sign in / Sign up

Export Citation Format

Share Document