scholarly journals Evaluation of Lubricant Film Thickness for Ball Bearings 6207 & 6307 with Elliptical & Circular Contact Area

2017 ◽  
Vol 9 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Ritesh Kumar Dewangan ◽  
Surendra Pal Singh Matharu
Lubricants ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 48 ◽  
Author(s):  
Matthew David Marko

An effort was made to find a relationship between the lubricant thickness at the point of contact of rolling element ball bearings, and empirical equations to predict the life for bearings under constant motion. Two independent failure mechanisms were considered, fatigue failure and lubricant failure resulting in seizing of the roller bearing. A theoretical formula for both methods was established for the combined probability of failure using both failure mechanisms. Fatigue failure was modeled with the empirical equations of Lundberg and Palmgren and standardized in DIN/ISO281. The seizure failure, which this effort sought to investigate, was predicted using Greenwood and Williamson’s theories on surface roughness and asperities during lubricated contact. These two mechanisms were combined, and compared to predicted cycle lives of commercial roller bearing, and a clear correlation was demonstrated. This effort demonstrated that the Greenwood–Williams theories on the relative height of asperities versus lubricant film thickness can be used to predict the probability of a lubricant failure resulting in a roller bearing seizing during use.


1997 ◽  
Vol 119 (3) ◽  
pp. 456-461 ◽  
Author(s):  
Qian (Jane) Wang ◽  
Fanghui Shi ◽  
Si C. Lee

Numerical analyses of finite journal bearings operating with large eccentricity ratios were conducted to better understand the mixed lubrication phenomena in conformal contacts. The average Reynolds equation derived by Patir and Cheng was utilized in the lubrication analysis. The influence function, calculated numerically using the finite element method, was employed to compute the bearing deformation. The effects of bearing surface roughness were incorporated in the present analysis for the calculations of the asperity contact pressure and the asperity contact area. The numerical solutions of the hydrodynamic and asperity contact pressures, lubricant film thickness, and asperity contact area were evaluated based on a simulated bearing-journal geometry. The calculations revealed that the asperity contact pressure may vary significantly along both the width and the circumferential directions. It was also shown that the asperity contacts and the lubricant film thickness were strongly dependent on the bearing width, asperity orientation, and operating conditions.


Author(s):  
Matthew Marko

An effort was made to find a relationship between the ratio of average asperities height and lubricant thickness at the point of contact of rolling element ball bearings, and empirical equations to predict the life for bearings under constant motion. Two independent failure mechanisms were considered, fatigue failure and lubricant failure resulting in seizing of the roller bearing. A theoretical formula for both of these methods was established for the combined probability of failure using both of these failure mechanisms. Fatigue failure was modeled with the empirical equations of Lundberg and Palmgren and standardized in DIN/ISO281. The seizure failure, which this effort sought to investigate, was predicted using Greenwood and Williamson's theories on surface roughness and asperities during lubricated contact. These two mechanisms were combined, and compared to predicted cycle lives of commercial roller bearing, and a clear correlation was demonstrated. This effort demonstrated that the Greenwood-Williams theories on the relative height of asperities versus lubricant film thickness can be used to predict the probability of a lubricant failure resulting in a roller bearing seizing during use.


Author(s):  
C. Myant ◽  
H. A. Spikes

Obtaining lubricant film thickness values within a compliant contact is a challenging problem for several reasons [1]: • Lubricant film thickness covers a wide range of values. • The required measuring range is from fractions to hundreds of microns. • Contact area is considerably large when compared to “hard”, metallic contacts. • Many soft components have a high roughness compared to surfaces usually investigated with established techniques.


Author(s):  
Matthew Marko

An effort was made to find a relationship between the predicted tribological conditions at the point of contact of ball bearings, and empirical equations to predict the life for bearings under constant motion. The model was modified to predict the temperature dependence, and compare rapid accelerations and decelerations with empirical extrapolations.


1990 ◽  
Vol 112 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Dongchu Zhao

A method for measuring the lubricant condition with strain gage in rolling element bearings and the instrument used are introduced. In order to illustrate the method and the instrument, the theory of measuring lubricant films in rolling element bearings using strain technique, test apparatus, microcomputer hardware as well as software, flow charts for the main program and subprograms, are first described in detail. In addition, the lubricant film thickness is measured for several different lubricants and results are compared with theoretical ones. It is demonstrated that using the method and the instrument introduced in this paper, one can measure the lubricant condition inside bearings very accurately.


Sign in / Sign up

Export Citation Format

Share Document