scholarly journals COMPUTER SIMULATION OF DETERMINING SILTATION VOLUMES OF WATER RESERVOIR STORAGE ON THE AKSAY RIVER

Author(s):  
M. R. Magomedova ◽  
Z. A. Kurbanova ◽  
B. A. Shangereeva

Objectives. The development of a mathematical model for the increased turbidity zones of the Aksay river in order to determine the siltation volumes of the Aksay water reservoir storage.Method. The mathematical model is developed using the theory of probability and the theory of random process outliers. The model takes the normal distribution of the horizontal and vertical components of the instantaneous flow velocities into account, as well as the Rayleigh law of the distribution of their maxima. The proposed model is used to calculate the “turbidity tail” of the Aksay river.Result. Due to the multifactorial nature of the continuously associated processes of siltation and deposition of suspended and bottom sediments in the upper pounds of the Aksay reservoir storage hydrological system, a mathematical model of the reservoir accretion process is developed. This model provides the reliability of accretion forecasting with spatial and temporal correlation with the siltation process model, which is actually feasible on the basis of computer simulation.Conclusion. The developed model, which is based on a probabilistic approach and the theory of random process outliers, reflects the overall process of sediment transport in open channels. The development and execution of simulation programmes is carried out using the Microsoft Developer Studio (MDS) and the Fortran Power Station algorithmic language, which comprises not only a programming system, but also a set of tools for supporting large software projects integrated into MDS. 

2003 ◽  
Vol 8 (1) ◽  
pp. 3-18 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
J. Kulys

A mathematical model of amperometric biosensors has been developed to simulate the biosensor response in stirred as well as non stirred solution. The model involves three regions: the enzyme layer where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation the influence of the thickness of the enzyme layer as well the diffusion one on the biosensor response was investigated. The computer simulation was carried out using the finite difference technique.


1995 ◽  
Vol 38 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Mitsuhiro Fukuta ◽  
Tadashi Yanagisawa ◽  
Takashi Shimizu ◽  
Yasuhiro Suzuki

Author(s):  
Ombaki Richard ◽  
Kerongo Joash ◽  
Okwoyo M. James

Pollution of sub-surface water reservoirs mainly rivers and streams through contaminated water point sources (CWPS) was studied. The objective was to formulate a discrete time delay mathematical model which describes the dynamics of reservoir pollution using mixing-problem processes that involve single species contaminants such as nitrates, phosphorous and detergents. The concentration  of pollutants was expressed as a function of the inflow and outflow rates using the principle for the conservation of mass. Systems of ODEs generated from principles of mixing problems were refined into a system of DDEs so that the concentration of pollutant leaving the reservoir at time would be determined at some earlier instant, for the delay. The formulated model is a mathematical discrete time delay model which would be used to describe the dynamics of sub-surface water reservoir pollution. The results from the validation of the model were analyzed   to determine how time delays in the mixing processes affect the rate of particle movement in water reservoirs.


2019 ◽  
Vol 12 (4-5) ◽  
pp. 1167-1178
Author(s):  
Fang Qin ◽  
◽  
Ying Jiang ◽  
Ping Gu ◽  
◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 515-522
Author(s):  
Marwa S. Hussein ◽  
Imzahim A. Alwan ◽  
Tariq A. Hussain

The study area is located in the holy governorate of Karbala, Iraq; the research studied a predictive mathematical model of groundwater within Dibdiba Formation and by fifty (50) wells distributed randomly within the boundaries of the study area, all of them fall within the unconfined aquifer. Likewise, there is no component to direct the activity of these wells, where a mathematical model for the study area has been developed using the groundwater system modeling program (GMS v.10). The area was divided into a grid where the dimensions of a single cell ranged from 250m×250m. The model of the steady flow state was adjusted utilizing pressure driven conductivity extending from 9 to 15 m/day with a 0.15 storage coefficient to match the groundwater levels measured with the calculated groundwater table. The model was run for unsteady flow condition in the first scenario with fifty (50) wells and five (5) years. The drawdown in the groundwater tables ranged between (0.05-1.05) m. In the second scenario, the model was run after adding thirty-six (36) wells for five (5) years, groundwater limits 0.15-1.15 meters. The drawdown values are concentrated near wells sites, and the drawdown decline as we move away from the sites of these wells and this reflects the nature of the water reservoir located in the study area, which is characterized by high production where compensation resulting from the operation of the wells decline rapidly by the reservoir. Therefore, the values of the drawdown in elevations appeared very low. The study also showed the possibility of drilling additional wells in this area, depending on this model to benefit from them in the future for different uses.


1987 ◽  
Vol 11 (2) ◽  
pp. 65-70 ◽  
Author(s):  
P. G. Van De Veen ◽  
W. Van Der Tempel ◽  
J. De Vreiss

A mathematical model was used to investigate the dynamic behaviour of an above-knee (AK) prosthesis in the swing phase and to analyse the influence of mass and mass distribution on the maximal stump load and the required energy. The model consists of a bondgraph model of the prosthesis and a “walking” model which predicts the walking velocity, step length and the femoral trajectory. Equipment was developed to measure the inertial properties of the components of the prosthesis. Through computer simulation, stickdiagrams of the swing phase and graphs of the variation with time of the hip and stump forces were obtained. It was found that for a normal AK prosthesis with a knee-lock mechanism the axial stump load is greatest at the beginning and at the end of the swing phase. At a walking velocity of 5 km/hr the maximum axial stump load amounts to 2.1 times the static weight of the prosthesis. The maximum axial stump force appeared to be almost directly proportional to the total mass of the prosthesis but independent of the mass distribution. The required energy also increased with the mass of the prosthesis but is' dependent on mass distribution. Because of their comparable weights the influence of the shoe is almost equal to the influence of the prosthetic foot. Thus lightweight shoes should be used with lightweight prosthetic feet in order to add to their advantages.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Andrii Safonyk ◽  
Olena Prysiazhniuk

The paper suggests an approach to modeling the electrocoagulation process that is based on the generalization of the equations of incompressible fluid flow in nonisothermal conditions. In the model was taking into account the ratio between the values of the parameters which characterize the domination of convective and mass-exchange components of the process over diffusion. An asymptotic approximation of solutions of corresponding boundary value problems is constructed. Based on the received solutions, we conducted a computer simulation of the process of distribution of iron concentration inside the reactor that allows predicting various hydrodynamic phenomena such as internal recirculation and dead zones that affect the formation of a coagulant. The influence of current strength on the concentration of the target component at the exit from the reactor was investigated using the developed mathematical model. In addition, our findings also show the effect of the rate of heat formation from the electrodes on the efficiency of obtaining of coagulant.


1996 ◽  
Vol 42 (7) ◽  
pp. 1074-1078 ◽  
Author(s):  
J E Vaks

Abstract Linearity, interference evaluations of the performance of clinical chemistry systems, mathematical model selection for nonlinear calibration, and other assessments often involve several human sample pools with equally spaced analyte concentrations. Sequential mixing of equal volumes, first of the low and high pools to produce the middle pool, then of the low and middle pools to produce the mid-low pool, and of the high and middle pools to produce the mid-high pool, is recommended in the NCCLS EP7-P guideline for interference studies. Proportional mixing of the low and high pools to produce all of the required pool concentrations is recommended in the NCCLS EP6-P guideline for linearity studies. Mathematical analysis and computer simulation show that the sequential mixing is much more accurate and precise than the proportional mixing. Therefore, we recommend sequential mixing for clinical chemistry application.


Sign in / Sign up

Export Citation Format

Share Document