scholarly journals IIRSA and the role assigned to the La Plata Basin region in South American physical integration

Author(s):  
Eduarda Figueiredo Scheibe
2019 ◽  
Vol 149 ◽  
pp. 103986 ◽  
Author(s):  
E. Avigliano ◽  
C. Clavijo ◽  
P. Scarabotti ◽  
S. Sánchez ◽  
S. Llamazares Vegh ◽  
...  

Author(s):  
Paulo Rodrigo Zanin ◽  
Prakki Satyamurty

AbstractThe inter-seasonal and inter-basins hydrological couplings between the Amazon and the La Plata basins are obtained with the help of ERA-5 atmospheric reanalysis, MERGE/CPTEC precipitation, GLEAM evapotranspiration and the GLDAS/Noah soil moisture datasets. The hypotheses formulated by Zanin and Satyamurty (2020a) about the hydrological processes interconnecting the Amazon Basin and the La Plata Basin are tested. A new method for finding the source-sink relationships among the boxes (regions) is presented. The precipitation recycling, frequency of source-sink behaviors, the soil moisture memory and the continental moisture transport between remote regions are evaluated. The main result of this study is that the amount of water precipitated over the Southeastern region of the Amazon Basin at the end of the South American Monsoon during autumn season, influences the amount of precipitation during winter season over the Central-western region of the La Plata Basin.


2009 ◽  
Vol 27 (2) ◽  
pp. 645-657 ◽  
Author(s):  
G. A. M. Silva ◽  
T. Ambrizzi ◽  
J. A. Marengo

Abstract. The differences on the phase and wavelength of the quasi-stationary waves over the South America generated by El Niño (EN) and La Niña (LN) events seem to affect the daily evolution of the South American Low Level Jet east of the Andes (SALLJ). For the austral summer period of 1977–2004 the SALLJ episodes detected according to Bonner criterion 1 show normal to above-normal frequency in EN years, and in LN years the episodes show normal to below-normal frequency. During EN and LN years the SALLJ episodes were associated with positive rainfall anomalies over the La Plata Basin, but more intense during LN years. During EN years the increase in the SALLJ cases were associated to intensification of the Subtropical Jet (SJ) around 30° S and positive Sea Level Pressure (SLP) anomalies over the western equatorial Atlantic and tropical South America, particularly over central Brazil. This favored the intensification of the northeasterly trade winds over the northern continent and it channeled by the Andes mountain to the La Plata Basin region where negative SLP are found. The SALLJ cases identified during the LN events were weaker and less frequent when compared to those for EN years. In this case the SJ was weaker than in EN years and the negative SLP anomalies over the tropical continent contributed to the inversion of the northeasterly trade winds. Also a southerly flow anomaly was generated by the geostrophic balance due to the anomalous blocking over southeast Pacific and the intense cyclonic transient over the southern tip of South America. As result the warm tropical air brought by the SALLJ encounters the cold extratropical air from the southerly winds over the La Plata basin. This configuration can increase the conditional instability over the La Plata basin and may explain the more intense positive rainfall anomalies in SALLJ cases during LN years than in EN years.


2014 ◽  
Vol 14 (23) ◽  
pp. 13337-13359 ◽  
Author(s):  
D. C. Zemp ◽  
C.-F. Schleussner ◽  
H. M. J. Barbosa ◽  
R. J. van der Ent ◽  
J. F. Donges ◽  
...  

Abstract. Continental moisture recycling is a crucial process of the South American climate system. In particular, evapotranspiration from the Amazon basin contributes substantially to precipitation regionally as well as over other remote regions such as the La Plata basin. Here we present an in-depth analysis of South American moisture recycling mechanisms. In particular, we quantify the importance of cascading moisture recycling (CMR), which describes moisture transport between two locations on the continent that involves re-evaporation cycles along the way. Using an Eulerian atmospheric moisture tracking model forced by a combination of several historical climate data sets, we were able to construct a complex network of moisture recycling for South America. Our results show that CMR contributes about 9–10% to the total precipitation over South America and 17–18% over the La Plata basin. CMR increases the fraction of total precipitation over the La Plata basin that originates from the Amazon basin from 18–23 to 24–29% during the wet season. We also show that the south-western part of the Amazon basin is not only a direct source of rainfall over the La Plata basin, but also a key intermediary region that distributes moisture originating from the entire Amazon basin towards the La Plata basin during the wet season. Our results suggest that land use change in this region might have a stronger impact on downwind rainfall than previously thought. Using complex network analysis techniques, we find the eastern side of the sub-tropical Andes to be a key region where CMR pathways are channeled. This study offers a better understanding of the interactions between the vegetation and the atmosphere on the water cycle, which is needed in a context of land use and climate change in South America.


2021 ◽  
pp. 251-285
Author(s):  
Isabela Battistello Espindola ◽  
Maria Luisa Telarolli Almeida de Leite ◽  
Wagner Costa Ribeiro

2014 ◽  
Vol 14 (11) ◽  
pp. 17479-17526 ◽  
Author(s):  
D. C. Zemp ◽  
C.-F. Schleussner ◽  
H. M. J. Barbosa ◽  
R. J. Van der Ent ◽  
J. F. Donges ◽  
...  

Abstract. Continental moisture recycling is a crucial process of the South American climate system. Evapotranspiration from the Amazon river basin contributes to precipitation regionally and in the La Plata river basin. Here we present an in-depth analysis of South American moisture recycling. We quantify the importance of "cascading moisture recycling", which describes the exchange of moisture between the vegetation and the atmosphere through precipitation and re-evaporation cycles on its way between two locations on the continent. We use the Water Accounting Model 2-layers (WAM-2layers) forced by precipitation from TRMM and evapotranspiration from MODIS for the period 2001 until 2010 to construct moisture recycling networks. These networks describe the direction and amount of moisture transported from its source (evapotranspiration) to its destination (precipitation) in South America. Model-based calculations of continental and regional recycling ratios in the Amazon basin compare well with other existing studies using different datasets and methodologies. Our results show that cascading moisture recycling contributes about 10% to the total precipitation over South America and 17% over the La Plata basin. Considering cascading moisture recycling increases the total dependency of the La Plata basin on moisture from the Amazon basin by about 25% from 23 to 29% during the wet season. Using tools from complex network analysis, we reveal the importance of the south-western part of the Amazon basin as a key intermediary region for continental moisture transport in South America during the wet season. Our results suggest that land use change in this region might have a stronger impact on downwind rainfed agriculture and ecosystem stability than previously thought.


2016 ◽  
Vol 68 (2-3) ◽  
pp. 243-255 ◽  
Author(s):  
EM de Jesus ◽  
RP da Rocha ◽  
MS Reboita ◽  
M Llopart ◽  
LM Mosso Dutra ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yamila P. Cardoso ◽  
Luiz Jardim de Queiroz ◽  
Ilham A. Bahechar ◽  
Paula E. Posadas ◽  
Juan I. Montoya-Burgos

AbstractDistribution history of the widespread Neotropical genus Hypostomus was studied to shed light on the processes that shaped species diversity. We inferred a calibrated phylogeny, ancestral habitat preference, ancestral areas distribution, and the history of dispersal and vicariance events of this genus. The phylogenetic and distribution analyses indicate that Hypostomus species inhabiting La Plata Basin do not form a monophyletic clade, suggesting that several unrelated ancestral species colonized this basin in the Miocene. Dispersal to other rivers of La Plata Basin started about 8 Mya, followed by habitat shifts and an increased rate of cladogenesis. Amazonian Hypostomus species colonized La Plata Basin several times in the Middle Miocene, probably via the Upper Paraná and the Paraguay rivers that acted as dispersal corridors. During the Miocene, La Plata Basin experienced marine incursions, and geomorphological and climatic changes that reconfigured its drainage pattern, driving dispersal and diversification of Hypostomus. The Miocene marine incursion was a strong barrier and its retraction triggered Hypostomus dispersal, increased speciation rate and ecological diversification. The timing of hydrogeological changes in La Plata Basin coincides well with Hypostomus cladogenetic events, indicating that the history of this basin has acted on the diversification of its biota.


2021 ◽  
Author(s):  
Yanina F. Briñoccoli ◽  
Luiz Jardim de Queiroz ◽  
Sergio Bogan ◽  
Ariel Paracampo ◽  
Paula E. Posadas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document