Chapter 9. Language in an Epidemiological Study: The North Manhattan Aging Study in New York City

2011 ◽  
Vol 11 (14) ◽  
pp. 7375-7397 ◽  
Author(s):  
S.-H. Lee ◽  
S.-W. Kim ◽  
M. Trainer ◽  
G. J. Frost ◽  
S. A. McKeen ◽  
...  

Abstract. Transport and chemical transformation of well-defined New York City (NYC) urban plumes over the North Atlantic Ocean were studied using aircraft measurements collected on 20–21 July 2004 during the ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) field campaign and WRF-Chem (Weather Research and Forecasting-Chemistry) model simulations. The strong NYC urban plumes were characterized by carbon monoxide (CO) mixing ratios of 350–400 parts per billion by volume (ppbv) and ozone (O3) levels of about 100 ppbv near New York City on 20 July in the WP-3D in-situ and DC-3 lidar aircraft measurements. On 21 July, the two aircraft captured strong urban plumes with about 350 ppbv CO and over 150 ppbv O3 (~160 ppbv maximum) about 600 km downwind of NYC over the North Atlantic Ocean. The measured urban plumes extended vertically up to about 2 km near New York City, but shrank to 1–1.5 km over the stable marine boundary layer (MBL) over the North Atlantic Ocean. The WRF-Chem model reproduced ozone formation processes, chemical characteristics, and meteorology of the measured urban plumes near New York City (20 July) and in the far downwind region over the North Atlantic Ocean (21 July). The quasi-Lagrangian analysis of transport and chemical transformation of the simulated NYC urban plumes using WRF-Chem results showed that the pollutants can be efficiently transported in (isentropic) layers in the lower atmosphere (<2–3 km) over the North Atlantic Ocean while maintaining a dynamic vertical decoupling by cessation of turbulence in the stable MBL. The O3 mixing ratio in the NYC urban plumes remained at 80–90 ppbv during nocturnal transport over the stable MBL, then grew to over 100 ppbv by daytime oxidation of nitrogen oxides (NOx = NO + NO2) with mixing ratios on the order of 1 ppbv. Efficient transport of reactive nitrogen species (NOy), specifically nitric acid (HNO3), was confirmed through the comparison of the CO/NOy ratio in photochemically fresh and aged NYC plumes, implying the possibility of long-range transport of O3 over the stable MBL over the North Atlantic Ocean in association with NOx regeneration mechanism. The impact of chemical initial and boundary conditions (IC/BCs) on modelled O3 urban plumes was investigated in terms of the background O3 level and the vertical structure of the urban plumes. Simulations with dynamic ("time-variant") chemical IC/BCs enhanced the O3 level by 2–12 ppbv on average in the atmospheric layer below 3 km, showing better agreement with the observed NYC plumes and biomass-burning plumes than the simulation with prescribed static IC/BCs. The simulation including MOZART-4 chemical IC/BCs and Alaskan/Canadian wildfire emissions compared better to the observed O3 profiles in the upper atmospheric layer (>~3 km) than models that only accounted for North American anthropogenic/biogenic and wildfire contributions to background ozone. The comparison between models and observations show that chemical IC/BCs must be properly specified to achieve accurate model results.


Author(s):  
Federico Varese

From the mid-nineteenth century, many Sicilians, including members of the mafia, were on the move. After sketching the contours of the mafia in Sicily in the nineteenth century, this chapter outlines the parallel history of Italian migration and mafia activities in New York City and Rosario, Argentina, and offers an analytic account of the diverging outcomes. Only in the North American city did a mafia that resembled the Sicilian one emerge. The Prohibition provided an enormous boost to both the personnel and power of Italian organized crime. The risk of punishment was low, the gains to be made were enormous, and there was no social stigma attached to this trade.


2019 ◽  
pp. 81-97
Author(s):  
James G. Mendez

Black troops and their families suffered from several kinds of violence inflicted on them alone. The rebels had a habit of killing black troops after they had surrendered or been captured. Yet, black troops continued to join the army and support the Union cause in spite of this risk; they fought harder in combat. In addition African-American family members in the North faced violence themselves at home. But, in their case, their assailants were white northerners, such as in the 1863 race riots in Detroit on March 6th and the three-day riots in New York City on July 13th–16th. Blacks were killed and wounded in both riots, and their property was destroyed. Even with the threat of violence against them in the North as well as the South, northern blacks continued to enlist and support the Union war effort. African Americans remained loyal to the Union and to the cause.


2015 ◽  
Vol 112 (41) ◽  
pp. 12610-12615 ◽  
Author(s):  
Andra J. Reed ◽  
Michael E. Mann ◽  
Kerry A. Emanuel ◽  
Ning Lin ◽  
Benjamin P. Horton ◽  
...  

In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850–1800) and anthropogenic era (A.D.1970–2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.


2020 ◽  
pp. 1-26
Author(s):  
Scott D. Stanford ◽  
Byron D. Stone ◽  
John C. Ridge ◽  
Ron W. Witte ◽  
Richard R. Pardi ◽  
...  

Abstract Deposits of at least three glaciations are present in New Jersey and the New York City area. The oldest deposits are magnetically reversed. Pollen and stratigraphic relations suggest that they are from the earliest Laurentide advance at ~2.4 Ma. Deposits of a second advance are overlain by peat dated to 41 ka and so are pre-Marine Isotope Stage (pre-MIS) 2. Their relation to marine deposits indicates that they predate MIS 5 but postdate MIS 11 and may postdate MIS 7 or 9, suggesting an MIS 6 age. The most recent deposits are of MIS 2 (last glacial maximum [LGM]) age. Radiocarbon dates and varve counts tied to glacial-lake events indicate that LGM ice arrived at its terminus at 25 ka, stood at the terminus until ~24 ka, retreated at a rate of 80 m/yr until 23.5 ka, and then retreated at a rate of 12 m/yr to 18 ka. At 18 ka the retreat record connects to the base of the North American Varve Chronology at Newburgh, New York. The 25–24 ka age for the LGM is slightly younger than, but within the uncertainty of, cosmogenic ages; it is significantly older than the oldest dated macrofossils in postglacial deposits in the region.


1938 ◽  
Vol 4 (1) ◽  
pp. 53-58 ◽  
Author(s):  
James D. Burggraf

The coast of Long Island is dotted with shellheaps, both large and small, of which all but a few are true kitchen middens of the pre-white contact period. This is particularly true of the region investigated by the writer, from the New York City line to Stony Brook on the North Shore. In only one heap examined prior to 1936 did a single artifact of European origin present itself. In that instance, a badly corroded triangular arrow of iron was found in a pit surrounded by deep deposits of shell and other refuse that contained not one fragment of metal, glass, or crockery. In this heap the majority of arrow points were of local quartz, and triangular in pattern. The pottery was abundant, and though most sherds were of typical Long Island Algonkin vessels, there was a fair amount of definitely Iroquoian ware including a small, nearly complete, square-collared pot that cannot be distinguished from a Mohawk Valley specimen.


2019 ◽  
pp. 169-195
Author(s):  
Nancy E. Davis

As chapter 7 tells us, Afong Moy’s return to New York City in 1835 began her transition from a promoter of goods to that of spectacle herself. Her new manager, Henry Hannington, may have been responsible for that change. Such a transition exposed her to both the actions of moral reformers in New York and, later, the jibes of newspaper reporters in Boston. To publicize Afong Moy, her new manager joined her presentation with that of other performers in Salem, Massachusetts, New Haven, Connecticut, and Albany, New York. The public’s exposure to Afong Moy and China affected and influenced American material culture.


2011 ◽  
Vol 11 (5) ◽  
pp. 14031-14089
Author(s):  
S.-H. Lee ◽  
S.-W. Kim ◽  
M. Trainer ◽  
G. J. Frost ◽  
S. A. McKeen ◽  
...  

Abstract. Transport and chemical transformation of well-defined New York City (NYC) urban plumes over the North Atlantic Ocean were studied using aircraft measurements collected on 20–21 July 2004 during the ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) field campaign and WRF-Chem (Weather Research and Forecasting-Chemistry) model simulations. The strong NYC urban plumes were characterized by carbon monoxide (CO) mixing ratios of 350–400 parts per billion by volume (ppbv) and ozone (O3) levels of about 100 ppbv near New York City on 20 July in the WP-3D in-situ and DC-3 lidar aircraft measurements. On 21 July, the two aircraft captured strong urban plumes with about 350 ppbv CO and over 150 ppbv O3 (~160 ppbv maximum) about 600 km downwind of NYC over the North Atlantic Ocean. The measured urban plumes extended vertically up to about 2 km near New York City, but shrank to 1–1.5 km over the stable marine boundary layer (MBL) over the North Atlantic Ocean. The WRF-Chem model reproduced ozone formation processes, chemical characteristics, and meteorology of the measured urban plumes near New York City (20 July) and in the far downwind region over the North Atlantic Ocean (21 July). The quasi-Lagrangian analysis of transport and chemical transformation of the simulated NYC urban plumes using WRF-Chem results showed that the pollutants can be efficiently transported in (isentropic) layers in the lower atmosphere (<2–3 km) over the North Atlantic Ocean while maintaining a dynamic vertical decoupling by cessation of turbulence in the stable MBL. The O3 mixing ratio in the NYC urban plumes remained at 80–90 ppbv during nocturnal transport over the stable MBL, then grew to over 100 ppbv by daytime oxidation of nitrogen oxides (NOx = NO + NO2) with mixing ratios on the order of 1 ppbv. Efficient transport of reactive nitrogen species (NOy), specifically nitric acid (HNO3), was confirmed through the comparison of the CO/NOy ratio in photochemically fresh and aged NYC plumes, implying the possibility of long-range transport of O3 over the stable MBL over the North Atlantic Ocean in association with NOx regeneration mechanism. The impact of chemical initial and boundary conditions (IC/BCs) on modelled O3 urban plumes was investigated in terms of the background O3 level and the vertical structure of the urban plumes. Simulations with dynamic chemical IC/BCs enhanced the O3 level by 2–12 ppbv on average in the atmospheric layer below 3 km, showing better agreement with the observed NYC plumes and biomass-burning plumes than the simulation with prescribed static IC/BCs. The simulation including MOZART-4 chemical IC/BCs and Alaskan/Canadian wildfire emissions compared better to the observed O3 profiles in the upper atmospheric layer (>~3 km) than models that only accounted for North American anthropogenic/biogenic and wildfire contributions to background ozone. The comparison between models and observations show that chemical IC/BCs must be properly specified to achieve accurate model results.


Sign in / Sign up

Export Citation Format

Share Document